Geometry of Submanifolds and Homogeneous Spaces


Book Description

The present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered.










Almost Complex Homogeneous Spaces and Their Submanifolds


Book Description

This book is an introduction to the theory of almost complex homogeneous spaces and certain closely related class of spaces, so called partial G-flag manifolds. Submanifolds, in particular holomorphic curves, are also treated using the theory of moving frames and the structure theory of compact lie groups. The exposition is reasonably self-contained and this book is strongly recommended as a text for beginning graduate students.










Geometry And Topology Of Submanifolds X: Differential Geometry In Honor Of Professor S S Chern


Book Description

Contents:Progress in Affine Differential Geometry — Problem List and Continued Bibliography (T Binder & U Simon)On the Classification of Timelike Bonnet Surfaces (W H Chen & H Z Li)Affine Hyperspheres with Constant Affine Sectional Curvature (F Dillen et al.)Geometric Properties of the Curvature Operator (P Gilkey)On a Question of S S Chern Concerning Minimal Hypersurfaces of Spheres (I Hiric( & L Verstraelen)Parallel Pure Spinors on Pseudo-Riemannian Manifolds (I Kath)Twistorial Construction of Spacelike Surfaces in Lorentzian 4-Manifolds (F Leitner)Nirenberg's Problem in 90's (L Ma)A New Proof of the Homogeneity of Isoparametric Hypersurfaces with (g,m) = (6, 1) (R Miyaoka)Harmonic Maps and Negatively Curved Homogeneous Spaces (S Nishikawa)Biharmonic Morphisms Between Riemannian Manifolds (Y L Ou)Intrinsic Properties of Real Hypersurfaces in Complex Space Forms (P J Ryan)On the Nonexistence of Stable Minimal Submanifolds in Positively Pinched Riemannian Manifolds (Y B Shen & H Q Xu)Geodesic Mappings of the Ellipsoid (K Voss)η-Invariants and the Poincaré-Hopf Index Formula (W Zhang)and other papers Readership: Researchers in differential geometry and topology. Keywords:Conference;Proceedings;Berlin (Germany);Beijing (China);Geometry;Topology;Submanifolds X;Differential Geometry;Dedication




An Introduction to Lie Groups and the Geometry of Homogeneous Spaces


Book Description

It is remarkable that so much about Lie groups could be packed into this small book. But after reading it, students will be well-prepared to continue with more advanced, graduate-level topics in differential geometry or the theory of Lie groups. The theory of Lie groups involves many areas of mathematics. In this book, Arvanitoyeorgos outlines enough of the prerequisites to get the reader started. He then chooses a path through this rich and diverse theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces. In this way, he avoids the extra detail needed for a thorough discussion of other topics. Lie groups and homogeneous spaces are especially useful to study in geometry, as they provide excellent examples where quantities (such as curvature) are easier to compute. A good understanding of them provides lasting intuition, especially in differential geometry. The book is suitable for advanced undergraduates, graduate students, and research mathematicians interested in differential geometry and neighboring fields, such as topology, harmonic analysis, and mathematical physics.




The Geometry of Submanifolds


Book Description

This is a comprehensive presentation of the geometry of submanifolds that expands on classical results in the theory of curves and surfaces. The geometry of submanifolds starts from the idea of the extrinsic geometry of a surface, and the theory studies the position and properties of a submanifold in ambient space in both local and global aspects. Discussions include submanifolds in Euclidean states and Riemannian space, minimal submanifolds, Grassman mappings, multi-dimensional regular polyhedra, and isometric immersions of Lobachevski space into Euclidean spaces. This volume also highlights the contributions made by great geometers to the geometry of submanifolds and its areas of application.




Submanifolds and Holonomy


Book Description

Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.New to the Second EditionNew chapter on normal holonom