Geometry of Locally Finite Spaces
Author : Vladimir A. Kovalevsky
Publisher :
Page : 322 pages
File Size : 47,28 MB
Release : 2008
Category : Geometry, Algebraic
ISBN : 9783981225204
Author : Vladimir A. Kovalevsky
Publisher :
Page : 322 pages
File Size : 47,28 MB
Release : 2008
Category : Geometry, Algebraic
ISBN : 9783981225204
Author : Boris Zilber
Publisher : American Mathematical Soc.
Page : 132 pages
File Size : 43,60 MB
Release :
Category : Mathematics
ISBN : 9780821897454
The 1970s saw the appearance and development in categoricity theory of a tendency to focus on the study and description of uncountably categorical theories in various special classes defined by natural algebraic or syntactic conditions. There have thus been studies of uncountably categorical theories of groups and rings, theories of a one-place function, universal theories of semigroups, quasivarieties categorical in infinite powers, and Horn theories. In Uncountably Categorical Theories , this research area is referred to as the special classification theory of categoricity. Zilber's goal is to develop a structural theory of categoricity, using methods and results of the special classification theory, and to construct on this basis a foundation for a general classification theory of categoricity, that is, a theory aimed at describing large classes of uncountably categorical structures not restricted by any syntactic or algebraic conditions.
Author : Yoav Benyamini
Publisher : American Mathematical Soc.
Page : 512 pages
File Size : 27,33 MB
Release : 1998
Category : Mathematics
ISBN : 9780821869635
This book presents a systematic and unified study of geometric nonlinear functional analysis. This area has its classical roots in the beginning of the twentieth century and is now a very active research area, having close connections to geometric measure theory, probability, classical analysis, combinatorics, and Banach space theory. The main theme of the book is the study of uniformly continuous and Lipschitz functions between Banach spaces (e.g., differentiability, stability, approximation, existence of extensions, fixed points, etc.). This study leads naturally also to the classification of Banach spaces and of their important subsets (mainly spheres) in the uniform and Lipschitz categories. Many recent rather deep theorems and delicate examples are included with complete and detailed proofs. Challenging open problems are described and explained, and promising new research directions are indicated.
Author : Yves Cornulier
Publisher : European Mathematical Society
Page : 248 pages
File Size : 12,27 MB
Release : 2016
Category : Mathematics
ISBN : 9783037191668
The main aim of this book is the study of locally compact groups from a geometric perspective, with an emphasis on appropriate metrics that can be defined on them. The approach has been successful for finitely generated groups and can be favorably extended to locally compact groups. Parts of the book address the coarse geometry of metric spaces, where ``coarse'' refers to that part of geometry concerning properties that can be formulated in terms of large distances only. This point of view is instrumental in studying locally compact groups. Basic results in the subject are exposed with complete proofs; others are stated with appropriate references. Most importantly, the development of the theory is illustrated by numerous examples, including matrix groups with entries in the the field of real or complex numbers, or other locally compact fields such as $p$-adic fields, isometry groups of various metric spaces, and last but not least, discrete groups themselves. The book is aimed at graduate students, advanced undergraduate students, and mathematicians seeking some introduction to coarse geometry and locally compact groups.
Author : Csaba D. Toth
Publisher : CRC Press
Page : 1928 pages
File Size : 20,41 MB
Release : 2017-11-22
Category : Computers
ISBN : 1498711421
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
Author : Katsuro Sakai
Publisher : Springer Science & Business Media
Page : 539 pages
File Size : 33,61 MB
Release : 2013-07-22
Category : Mathematics
ISBN : 443154397X
This book is designed for graduate students to acquire knowledge of dimension theory, ANR theory (theory of retracts), and related topics. These two theories are connected with various fields in geometric topology and in general topology as well. Hence, for students who wish to research subjects in general and geometric topology, understanding these theories will be valuable. Many proofs are illustrated by figures or diagrams, making it easier to understand the ideas of those proofs. Although exercises as such are not included, some results are given with only a sketch of their proofs. Completing the proofs in detail provides good exercise and training for graduate students and will be useful in graduate classes or seminars. Researchers should also find this book very helpful, because it contains many subjects that are not presented in usual textbooks, e.g., dim X × I = dim X + 1 for a metrizable space X; the difference between the small and large inductive dimensions; a hereditarily infinite-dimensional space; the ANR-ness of locally contractible countable-dimensional metrizable spaces; an infinite-dimensional space with finite cohomological dimension; a dimension raising cell-like map; and a non-AR metric linear space. The final chapter enables students to understand how deeply related the two theories are. Simplicial complexes are very useful in topology and are indispensable for studying the theories of both dimension and ANRs. There are many textbooks from which some knowledge of these subjects can be obtained, but no textbook discusses non-locally finite simplicial complexes in detail. So, when we encounter them, we have to refer to the original papers. For instance, J.H.C. Whitehead's theorem on small subdivisions is very important, but its proof cannot be found in any textbook. The homotopy type of simplicial complexes is discussed in textbooks on algebraic topology using CW complexes, but geometrical arguments using simplicial complexes are rather easy.
Author : Fabrice Baudoin
Publisher : Springer Nature
Page : 312 pages
File Size : 43,51 MB
Release : 2022-02-04
Category : Mathematics
ISBN : 3030841413
This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.
Author : Steven G. Krantz
Publisher : Springer Science & Business Media
Page : 311 pages
File Size : 27,90 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 1461215749
The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor hoods, the second fundamental form, the notion of "positive reach", and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry.
Author : J. Śniatycki
Publisher : Cambridge University Press
Page : 249 pages
File Size : 10,45 MB
Release : 2013-06-13
Category : Mathematics
ISBN : 1107067383
In this book the author illustrates the power of the theory of subcartesian differential spaces for investigating spaces with singularities. Part I gives a detailed and comprehensive presentation of the theory of differential spaces, including integration of distributions on subcartesian spaces and the structure of stratified spaces. Part II presents an effective approach to the reduction of symmetries. Concrete applications covered in the text include reduction of symmetries of Hamiltonian systems, non-holonomically constrained systems, Dirac structures, and the commutation of quantization with reduction for a proper action of the symmetry group. With each application the author provides an introduction to the field in which relevant problems occur. This book will appeal to researchers and graduate students in mathematics and engineering.
Author : Daniel Huybrechts
Publisher : Cambridge University Press
Page : 345 pages
File Size : 31,70 MB
Release : 2010-05-27
Category : Mathematics
ISBN : 1139485822
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.