Geometry of the Fundamental Interactions


Book Description

The Yang-Mills theory of gauge interactions is a prime example of interdisciplinary mathematics and advanced physics. Its historical development is a fascinating window into the ongoing struggle of mankind to understand nature. The discovery of gauge fields and their properties is the most formidable landmark of modern physics. The expression of the gauge field strength as the curvature associated to a given connection, places quantum field theory in the same geometrical footing as the gravitational field of general relativity which is naturally written in geometrical terms. The understanding of such geometrical property may help one day to write a unified field theory starting from symmetry principles. Of course, there are remarkable differences between the standard gauge fields and the gravitational field, which must be understood by mathematicians and physicists before attempting such unification. In particular, it is important to understand why gravitation is not a standard gauge field. This book presents an account of the geometrical properties of gauge field theory, while trying to keep the equilibrium between mathematics and physics. At the end we will introduce a similar approach to the gravitational field.







Theory of Gravitational Interactions


Book Description

This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects.The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. This textbook is primarily intended for students pursuing a theoretical or astroparticle curriculum but is also relevant for PhD students and young researchers.




The Etheric Particle 216


Book Description

The numerical universe revealed from Glastonbury, deciphered from crop circles, ancient measures, astronomy, mathematics and physics, bringing a new understanding of the fifth element or the ether.This book presents a unified theory of science, metaphysics, the philosophy of divine nature and geometry, encoding harmonic numbers from the Bible, folklore and ancient scriptures, revealing a unique template uniting microcosm with macrocosm.




The Geometry of Ecological Interactions


Book Description

The field of theoretical ecology has expanded dramatically in the last few years. This volume gives detailed coverage of the main developing areas in spatial ecological theory, and is written by world experts in the field. Integrating the perspective from field ecology with novel methods for simplifying spatial complexity, it offers a didactical treatment with a gradual increase in mathematical sophistication from beginning to end. In addition, the volume features introductions to those fundamental phenomena in spatial ecology where emerging spatial patterns influence ecological outcomes quantitatively. An appreciation of the consequences of this is required if ecological theory is to move on in the 21st century. Written for reseachers and graduate students in theoretical, evolutionary and spatial ecology, applied mathematics and spatial statistics, it will be seen as a ground breaking treatment of modern spatial ecological theory.




Physics from Finance


Book Description

Understanding modern physics doesn’t have to be confusing and hard What if there was an intuitive way to understand how nature fundamentally works? What if there was a book that allowed you to see the whole picture and not just tiny parts of it? Thoughts like this are the reason that Physics from Finance now exists. What will you learn from this book? Get to know all fundamental interactions —Grasp how we can describe electromagnetic interactions, weak interactions, strong interactions and gravity using the same key ideas.Learn how to describe modern physics mathematically — Understand the meaning and origin of the Einstein equation, Maxwell’s equations, and the Schrödinger equation.Develop an intuitive understanding of key concepts — Read how we can understand abstract ideas like Gauge Symmetry, Internal Spaces, Gauge Fields, Connections and Curvature using a simple toy model of the financial market.Get an understanding you can be proud of — Learn why fiber bundles and group theory provide a unified framework for all modern theories of physics. Physics from Finance is the most reader-friendly book on the geometry of modern physics ever written. Here’s why. First of all, it's is nothing like a formal university lecture. Instead, it’s like a casual conservation with a more experienced student. This also means that nothing is assumed to be “obvious” or “easy to see”.Each chapter, each section, and each page focusses solely on the goal to help you understand. Nothing is introduced without a thorough motivation and it is always clear where each formula comes from.The book contains no fluff since unnecessary content quickly leads to confusion. Instead, it ruthlessly focusses on the fundamentals and makes sure you’ll understand them in detail. The primary focus on the readers’ needs is also visible in dozens of small features that you won’t find in any other textbook In total, the book contains more than 100 illustrations that help you understand the most important concepts visually.Whenever a concept is used which was already introduced previously, there is a short sidenote that reminds you where it was first introduced and often recites the main points. In addition, helpful diagrams make sure you won’t get lost.




Gauge Theories Of Fundamental Interactions - Proceedings Of The Xxxii Semester In The Stefan Banach International Mathematical Center


Book Description

The 23 review lectures in this volume were presented by prominent specialists in the field. The scope is wide: major trends in gauge field theory and its applications are covered. A considerable part of the articles contain previously unpublished results.




Deformed Spacetime


Book Description

This volume provides a detailed discussion of the mathematical aspects and physical applications of a new geometrical structure of space-time, based on a generalization ("deformation") of the usual Minkowski space, as supposed to be endowed with a metric whose coefficients depend on the energy. This new five-dimensional scheme (Deformed Relativity in Five Dimensions, DR5) represents a true generalization of the usual Kaluza-Klein (KK) formalism.




Energy and Geometry


Book Description

Special Relativity (SR) is essentially grounded on the properties of space-time, i.e. isotropy of space and homogeneity of space and time (as a consequence of the equivalence of inertial frames) and on the Galilei principle of relativity.




Geometry, Symmetries, and Classical Physics


Book Description

This book provides advanced undergraduate physics and mathematics students with an accessible yet detailed understanding of the fundamentals of differential geometry and symmetries in classical physics. Readers, working through the book, will obtain a thorough understanding of symmetry principles and their application in mechanics, field theory, and general relativity, and in addition acquire the necessary calculational skills to tackle more sophisticated questions in theoretical physics. Most of the topics covered in this book have previously only been scattered across many different sources of literature, therefore this is the first book to coherently present this treatment of topics in one comprehensive volume. Key features: Contains a modern, streamlined presentation of classical topics, which are normally taught separately Includes several advanced topics, such as the Belinfante energy-momentum tensor, the Weyl-Schouten theorem, the derivation of Noether currents for diffeomorphisms, and the definition of conserved integrals in general relativity Focuses on the clear presentation of the mathematical notions and calculational technique