Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems


Book Description

This book is a new edition of a title originally published in1992. No other book has been published that treats inverse spectral and inverse scattering results by using the so called Poisson summation formula and the related study of singularities. This book presents these in a closed and comprehensive form, and the exposition is based on a combination of different tools and results from dynamical systems, microlocal analysis, spectral and scattering theory. The content of the first edition is still relevant, however the new edition will include several new results established after 1992; new text will comprise about a third of the content of the new edition. The main chapters in the first edition in combination with the new chapters will provide a better and more comprehensive presentation of importance for the applications inverse results. These results are obtained by modern mathematical techniques which will be presented together in order to give the readers the opportunity to completely understand them. Moreover, some basic generic properties established by the authors after the publication of the first edition establishing the wide range of applicability of the Poison relation will be presented for first time in the new edition of the book.




Microlocal Analysis, Sharp Spectral Asymptotics and Applications V


Book Description

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I, II, III and IV are applied to multiparticle quantum theory (asymptotics of the ground state energy and related problems), and to miscellaneous spectral problems.




Microlocal Analysis, Sharp Spectral Asymptotics and Applications IV


Book Description

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I, II and III are applied to the Schrödinger and Dirac operators in non-smooth settings and in higher dimensions.




Microlocal Analysis, Sharp Spectral Asymptotics and Applications I


Book Description

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the general microlocal semiclassical approach is developed, and microlocal and local semiclassical spectral asymptotics are derived.




Microlocal Analysis, Sharp Spectral Asymptotics and Applications III


Book Description

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I and II are applied to the Schrödinger and Dirac operators in smooth settings in dimensions 2 and 3.




Microlocal Analysis, Sharp Spectral Asymptotics and Applications II


Book Description

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the local spectral asymptotics of Volume I in the regular part of the domain are combined with variational estimates in the vicinity of singularities, and global asymptotics are derived in the general form. They are then applied to multiple cases and asymptotics with respect to a spectral parameter. Finally, cases in which only general methods but not the results can be applied (non-standard asymptotics) are studied.




Geometry of Reflecting Rays and Inverse Spectral Problems


Book Description

The behaviour of reflecting rays plays an essential role in many problems of mathematical physics. This book studies different geometric properties of reflecting rays for manifolds with smooth boundary and their applications to different inverse spectral and scattering problems. This is a developing area in which the authors have made important contributions. Results concerning the particular problems studied and which arise in several important domains of modern physics are presented. Some chapters concerning the generic properties of reflecting rays can be used for courses for graduate students.




Symmetries and Laplacians


Book Description

Designed as an introduction to harmonic analysis and group representations, this book examines concepts, ideas, results, and techniques related to symmetry groups and Laplacians. Its exposition is based largely on examples and applications of general theory, covering a wide range of topics rather than delving deeply into any particular area. Author David Gurarie, a Professor of Mathematics at Case Western Reserve University, focuses on discrete or continuous geometrical objects and structures, such as regular graphs, lattices, and symmetric Riemannian manifolds. Starting with the basics of representation theory, Professor Gurarie discusses commutative harmonic analysis, representations of compact and finite groups, Lie groups, and the Heisenberg group and semidirect products. Among numerous applications included are integrable hamiltonian systems, geodesic flows on symmetric spaces, and the spectral theory of the Hydrogen atom (Schrodinger operator with Coulomb potential) explicated by its Runge-Lenz symmetry. Three helpful appendixes include supplemental information, and the text concludes with references, a list of frequently used notations, and an index.




Spectral Geometry


Book Description




Mathematical Systems Theory in Biology, Communications, Computation and Finance


Book Description

This volume contains survey and research articles by some of the leading researchers in mathematical systems theory - a vibrant research area in its own right. Many authors have taken special care that their articles are self-contained and accessible also to non-specialists.