Geometry, Spectral Theory, Groups, and Dynamics


Book Description

This volume contains articles based on talks given at the Robert Brooks Memorial Conference on Geometry and Spectral Theory and the Workshop on Groups, Geometry and Dynamics held at Technion - the Israel Institute of Technology (Haifa). Robert Brooks' (1952 - 2002) broad range of mathematical interests is represented in the volume, which is devoted to various aspects of global analysis, spectral theory, the theory of Riemann surfaces, Riemannian and discrete geometry, and numbertheory. A survey of Brooks' work has been written by his close colleague, Peter Buser. Also included in the volume are articles on analytic topics, such as Szego's theorem, and on geometric topics, such as isoperimetric inequalities and symmetries of manifolds. The book is suitable for graduate studentsand researchers interested in various aspects of geometry and global analysis.




Geometry, Spectral Theory, Groups, and Dynamics


Book Description

This volume contains articles based on talks given at the Robert Brooks Memorial Conference on Geometry and Spectral Theory and the Workshop on Groups, Geometry and Dynamics held at Technion - the Israel Institute of Technology (Haifa). Robert Brooks' (1952-2002) broad range of mathematical interests is represented in the volume, which is devoted to various aspects of global analysis, spectral theory, the theory of Riemann surfaces, Riemannian and discrete geometry, and number theory. A survey of Brooks' work has been written by his close colleague, Peter Buser. Also included in the volume are articles on analytic topics, such as Szegos theorem, and on geometric topics, such as isoperimetric inequalities and symmetries of manifolds. The book is suitable for graduate students and researchers interested in various aspects of geometry and global analysis.




Spectral Theory and Geometry


Book Description

Authoritative lectures from world experts on spectral theory and geometry.




Spectral Theory and Analytic Geometry over Non-Archimedean Fields


Book Description

The purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and -adic analysis.




Dynamics, Geometry, Number Theory


Book Description

"Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--







Spectral Geometry


Book Description




Geometric and Computational Spectral Theory


Book Description

The book is a collection of lecture notes and survey papers based on the mini-courses given by leading experts at the 2015 Séminaire de Mathématiques Supérieures on Geometric and Computational Spectral Theory, held from June 15-26, 2015, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. The volume covers a broad variety of topics in spectral theory, highlighting its connections to differential geometry, mathematical physics and numerical analysis, bringing together the theoretical and computational approaches to spectral theory, and emphasizing the interplay between the two.




Spectral Theory of Infinite-Area Hyperbolic Surfaces


Book Description

This book is a self-contained monograph on spectral theory for non-compact Riemann surfaces, focused on the infinite-volume case. By focusing on the scattering theory of hyperbolic surfaces, this work provides a compelling introductory example which will be accessible to a broad audience. The book opens with an introduction to the geometry of hyperbolic surfaces. Then a thorough development of the spectral theory of a geometrically finite hyperbolic surface of infinite volume is given. The final sections include recent developments for which no thorough account exists.




Systolic Geometry and Topology


Book Description

The systole of a compact metric space $X$ is a metric invariant of $X$, defined as the least length of a noncontractible loop in $X$. When $X$ is a graph, the invariant is usually referred to as the girth, ever since the 1947 article by W. Tutte. The first nontrivial results for systoles of surfaces are the two classical inequalities of C. Loewner and P. Pu, relying on integral-geometric identities, in the case of the two-dimensional torus and real projective plane, respectively. Currently, systolic geometry is a rapidly developing field, which studies systolic invariants in their relation to other geometric invariants of a manifold. This book presents the systolic geometry of manifolds and polyhedra, starting with the two classical inequalities, and then proceeding to recent results, including a proof of M. Gromov's filling area conjecture in a hyperelliptic setting. It then presents Gromov's inequalities and their generalisations, as well as asymptotic phenomena for systoles of surfaces of large genus, revealing a link both to ergodic theory and to properties of congruence subgroups of arithmetic groups. The author includes results on the systolic manifestations of Massey products, as well as of the classical Lusternik-Schnirelmann category.