Geometry Transformed: Euclidean Plane Geometry Based on Rigid Motions


Book Description

Many paths lead into Euclidean plane geometry. Geometry Transformed offers an expeditious yet rigorous route using axioms based on rigid motions and dilations. Since transformations are available at the outset, interesting theorems can be proved sooner; and proofs can be connected to visual and tactile intuition about symmetry and motion. The reader thus gains valuable experience thinking with transformations, a skill that may be useful in other math courses or applications. For students interested in teaching mathematics at the secondary school level, this approach is particularly useful since geometry in the Common Core State Standards is based on rigid motions. The only prerequisite for this book is a basic understanding of functions. Some previous experience with proofs may be helpful, but students can also learn about proofs by experiencing them in this book—in a context where they can draw and experiment. The eleven chapters are organized in a flexible way to suit a variety of curriculum goals. In addition to a geometrical core that includes finite symmetry groups, there are additional topics on circles and on crystallographic and frieze groups, and a final chapter on affine and Cartesian coordinates. The exercises are a mixture of routine problems, experiments, and proofs.




Secondary Mathematics for Mathematicians and Educators


Book Description

In this engaging text, Michael Weiss offers an advanced view of the secondary mathematics curriculum through the prism of theory, analysis, and history, aiming to take an intellectually and mathematically mature perspective on the content normally taught in high school mathematics courses. Rather than a secondary mathematics textbook, Weiss presents here a textbook about the secondary mathematics curriculum, written for mathematics educators and mathematicians and presenting a long-overdue modern-day integration of the disparate topics and methods of secondary mathematics into a coherent mathematical theory. Areas covered include: Polynomials and polynomial functions; Geometry, graphs, and symmetry; Abstract algebra, linear algebra, and solving equations; Exponential and logarithmic functions; Complex numbers; The historical development of the secondary mathematics curriculum. Written using precise definitions and proofs throughout on a foundation of advanced content knowledge, Weiss offers a compelling and timely investigation into the secondary mathematics curriculum, relevant for preservice secondary teachers as well as graduate students and scholars in both mathematics and mathematics education.




An Integrated Introduction to Computer Graphics and Geometric Modeling


Book Description

Taking a novel, more appealing approach than current texts, An Integrated Introduction to Computer Graphics and Geometric Modeling focuses on graphics, modeling, and mathematical methods, including ray tracing, polygon shading, radiosity, fractals, freeform curves and surfaces, vector methods, and transformation techniques. The author begins with f




Visual Thought


Book Description

Lc number: 2006049946




Multiple View Geometry in Computer Vision


Book Description

A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.




Computer-Aided Geometric Design


Book Description

Computer graphics, computer-aided design, and computer-aided manufacturing are tools that have become indispensable to a wide array of activities in contemporary society. Euclidean processing provides the basis for these computer-aided design systems although it contains elements that inevitably lead to an inaccurate, non-robust, and complex system. The primary cause of the deficiencies of Euclidean processing is the division operation, which becomes necessary if an n-space problem is to be processed in n-space. The difficulties that accompany the division operation may be avoided if processing is conducted entirely in (n+1)-space. The paradigm attained through the logical extension of this approach, totally four-dimensional processing, is the subject of this book. This book offers a new system of geometric processing techniques that attain accurate, robust, and compact computations, and allow the construction of a systematically structured CAD system.




Biology in Time and Space


Book Description




Beyond Numeracy


Book Description

From the author of the national bestseller Innumeracy, a delightful exploration and explanation of mathematical concepts from algebra to zero in easily accessible alphabetical entries. "Paulos . . . does for mathematics what The Joy of Sex did for the boudoir. . . ."--Washington Post Book World. First time in paperback.




Geometric Algebra Applications Vol. I


Book Description

The goal of the Volume I Geometric Algebra for Computer Vision, Graphics and Neural Computing is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry. By treating a wide spectrum of problems in a common language, this Volume I offers both new insights and new solutions that should be useful to scientists, and engineers working in different areas related with the development and building of intelligent machines. Each chapter is written in accessible terms accompanied by numerous examples, figures and a complementary appendix on Clifford algebras, all to clarify the theory and the crucial aspects of the application of geometric algebra to problems in graphics engineering, image processing, pattern recognition, computer vision, machine learning, neural computing and cognitive systems.




College Geometry


Book Description

College Geometry is divided into two parts. Part I is a sequel to basic high school geometry and introduces the reader to some of the important modern extensions of elementary geometry- extension that have largely entered into the mainstream of mathematics. Part II treats notions of geometric structure that arose with the non-Euclidean revolution in the first half of the nineteenth century.