New Zealand Landscape


Book Description

New Zealand Landscape: Behind the Scene tells the story of New Zealand through the subject of geomorphology, a branch of earth science at the interface of geology and geography. Geomorphology is informally described as the 'science of scenery', and as with every science, ideas evolve as the research frontier advances. Users will find an early 21st century interpretation of the New Zealand landscape, an interpretation that rests on, and draws from, a rich foundation of ideas bequeathed by predecessors who have had the privilege of exploring, researching, and enjoying this corner of the Pacific. - Tells a geological and geographical story with questions that are addressed and answered in the course of the book - Written in an accessible style for both researchers and students - Features full-color photos of the beautiful New Zealand landscape










History of Geomorphology and Quaternary Geology


Book Description

These papers deal with various aspects of the histories of geomorphology and Quaternary geology in different parts of the world. They include: the origin of the term 'Quaternary', histories of ideas and debates relating to aspects of fluvial geomorphology, glacial geomorphology and glaciation, desert dunes and the geology of Australia, peneplains in China, a palaeo-Tokyo Bay in Japan, together with biographies of Charles Cotton, Valerija Čepulytė and Česlovas Pakuckas that highlight their respective contributions to the disciplines of geomorphology and Quaternary geology.




Tectonic Geomorphology


Book Description




Fundamentals of Geomorphology


Book Description

This extensively revised, restructured, and updated edition continues to present an engaging and comprehensive introduction to the subject, exploring the world’s landforms from a broad systems perspective. It covers the basics of Earth surface forms and processes, while reflecting on the latest developments in the field. Fundamentals of Geomorphology begins with a consideration of the nature of geomorphology, process and form, history, and geomorphic systems, and moves on to discuss: structure: structural landforms associated with plate tectonics and those associated with volcanoes, impact craters, and folds, faults, and joints process and form: landforms resulting from, or influenced by, the exogenic agencies of weathering, running water, flowing ice and meltwater, ground ice and frost, the wind, and the sea; landforms developed on limestone; and landscape evolution, a discussion of ancient landforms, including palaeosurfaces, stagnant landscape features, and evolutionary aspects of landscape change. This third edition has been fully updated to include a clearer initial explanation of the nature of geomorphology, of land surface process and form, and of land-surface change over different timescales. The text has been restructured to incorporate information on geomorphic materials and processes at more suitable points in the book. Finally, historical geomorphology has been integrated throughout the text to reflect the importance of history in all aspects of geomorphology. Fundamentals of Geomorphology provides a stimulating and innovative perspective on the key topics and debates within the field of geomorphology. Written in an accessible and lively manner, it includes guides to further reading, chapter summaries, and an extensive glossary of key terms. The book is also illustrated throughout with over 200 informative diagrams and attractive photographs, all in colour.




Tectonic Geomorphology


Book Description

Tectonic geomorphology is the study of the interplay between tectonic and surface processes that shape the landscape in regions of active deformation and at time scales ranging from days to millions of years. Over the past decade, recent advances in the quantification of both rates and the physical basis of tectonic and surface processes have underpinned an explosion of new research in the field of tectonic geomorphology. Modern tectonic geomorphology is an exceptionally integrative field that utilizes techniques and data derived from studies of geomorphology, seismology, geochronology, structure, geodesy, stratigraphy, meteorology and Quaternary science. While integrating new insights and highlighting controversies from the ten years of research since the 1st edition, this 2nd edition of Tectonic Geomorphology reviews the fundamentals of the subject, including the nature of faulting and folding, the creation and use of geomorphic markers for tracing deformation, chronological techniques that are used to date events and quantify rates, geodetic techniques for defining recent deformation, and paleoseismologic approaches to calibrate past deformation. Overall, this book focuses on the current understanding of the dynamic interplay between surface processes and active tectonics. As it ranges from the timescales of individual earthquakes to the growth and decay of mountain belts, this book provides a timely synthesis of modern research for upper-level undergraduate and graduate earth science students and for practicing geologists. Additional resources for this book can be found at: www.wiley.com/go/burbank/geomorphology.




Landscapes and Geomorphology: A Very Short Introduction


Book Description

Examining what landscape is, and how we use a range of ideas and techniques to study it, Andrew Goudie and Heather Viles demonstrate how geomorphologists have built on classic methods pioneered by some great 19th century scientists to examine our Earth.




Geomorphic Analysis of River Systems


Book Description

Filling a niche in the geomorphology teaching market, this introductory book is built around a 12 week course in fluvial geomorphology. ‘Reading the landscape’ entails making sense of what a riverscape looks like, how it works, how it has evolved over time, and how alterations to one part of a catchment may have secondary consequences elsewhere, over different timeframes. These place-based field analyses are framed within their topographic, climatic and environmental context. Issues and principles presented in the first part of this book provide foundational understandings that underpin the approach to reading the landscape that is presented in the second half of the book. In reading the landscape, detective-style investigations and interpretations are tied to theoretical and conceptual principles to generate catchment-specific analyses of river character, behaviour and evolution, including responses to human disturbance. This book has been constructed as an introductory text on river landscapes, providing a bridge and/or companion to quantitatively-framed or modelled approaches to landscape analysis that are addressed elsewhere. Key principles outlined in the book emphasise the importance of complexity, contingency and emergence in interpreting the character, behaviour and evolution of any given system. The target audience is second and third year undergraduate students in geomorphology, hydrology, earth science and environmental science, as well as river practitioners who use geomorphic understandings to guide scientific and/or management applications. The primary focus of Kirstie and Gary’s research and teaching entails the use of geomorphic principles as a tool with which to develop coherent scientific understandings of river systems, and the application of these understandings in management practice. Kirstie and Gary are co-developers of the River Styles® Framework and Short Course that is widely used in river management, decision-making and training. Additional resources for this book can be found at: www.wiley.com/go/fryirs/riversystems.




Tectonic Geomorphology of Mountains


Book Description

With a balance of theory and practical applications, Tectonic Geomorphology of Mountains is essential reading for research geologists and upper-level undergraduate and graduate students in the earth sciences. This book describes how tectonic events influence geomorphic processes and explores how landscapes respond to tectonic deformation in the ways in which they are weathered, washed, and abraded Uses new approaches to enhance theoretical models of landscape evolution and to solve practical problems such as the assessment of earthquake hazards Includes previously unpublished research and theory Examines how to use key landforms as reference levels in changing landscapes, estimate rates of mountain-range uplift, and map seismic shaking caused by prehistorical earthquakes Presents a diverse range of examples from around the world