Lunar Science: A Post - Apollo View


Book Description

Lunar Science: A Post-Apollo View: Scientific Results and Insights from the Lunar Samples explains the scientific results and discoveries of the manned Apollo lunar missions as they are understood. The emphasis is less on sample description and data and more on the interpretative aspects of the study, with the aim of providing a coherent story of the evolution of the moon and its origin as revealed by the lunar samples and the Apollo missions. This text has seven chapters; the first of which provides a historical background of efforts to study the moon prior to the Apollo missions, including lunar photogeologic mapping and direct exploration by spacecraft. Attention then turns to the Apollo missions and the lunar samples collected, beginning with Apollo 11 that landed on the moon on July 20, 1969 and followed by more missions. The next chapter describes the geology of the moon, with emphasis on craters, central peaks and peak rings, the large ringed basins, rilles, and maria lava flows. The reader is also introduced to the nature of the lunar surface material, the maria basalts, the highlands, and the moon's interior. This book concludes with a discussion on the evidence that has been gathered by the Apollo missions that offers insights into the origin and evolution of the moon. An epilogue reflects on the usefulness of manned space flight. This book will appeal to lunar scientists as well as to those with an interest in astronomy and space exploration.




ALSEP Termination Report


Book Description




To a Rocky Moon


Book Description

When human exploration of the lunar surface began in 1969, it marked not only an unprecedented technological achievement but also the culmination of scientific efforts to understand lunar geology. Memoirs of the Apollo astronauts have preserved the exploratory aspects of these missions; now a geologist who was an active participant in the lunar program offers a detailed historical view of those events--including the pre-Apollo era--from a heretofore untold scientific perspective. It was the responsibility of the scientific team of which Don Wilhelms was a member to assemble an overall picture of the Moon's structure and history in order to recommend where on the lunar surface fieldwork should be conducted and samples collected. His book relates the site-selection process in detail, and draws in concomitant events concerning mission operations to show how they affected the course of the scientific program. While discussing all six landings in detail, it tells the behind-the-scenes story of telescopic and spacecraft investigations before, during, and after the manned landings. Intended for anyone interested the space program, the history of science, or the application of geology to planetology, To a Rocky Moon will leave all readers with a better idea of what the Moon is really like. In so expertly summarizing this earlier phase of exploration, it stands as an authoritative touchstone for those involved in the next.




Lunar Sourcebook


Book Description

The only work to date to collect data gathered during the American and Soviet missions in an accessible and complete reference of current scientific and technical information about the Moon.




Vision and Voyages for Planetary Science in the Decade 2013-2022


Book Description

In recent years, planetary science has seen a tremendous growth in new knowledge. Deposits of water ice exist at the Moon's poles. Discoveries on the surface of Mars point to an early warm wet climate, and perhaps conditions under which life could have emerged. Liquid methane rain falls on Saturn's moon Titan, creating rivers, lakes, and geologic landscapes with uncanny resemblances to Earth's. Vision and Voyages for Planetary Science in the Decade 2013-2022 surveys the current state of knowledge of the solar system and recommends a suite of planetary science flagship missions for the decade 2013-2022 that could provide a steady stream of important new discoveries about the solar system. Research priorities defined in the report were selected through a rigorous review that included input from five expert panels. NASA's highest priority large mission should be the Mars Astrobiology Explorer Cacher (MAX-C), a mission to Mars that could help determine whether the planet ever supported life and could also help answer questions about its geologic and climatic history. Other projects should include a mission to Jupiter's icy moon Europa and its subsurface ocean, and the Uranus Orbiter and Probe mission to investigate that planet's interior structure, atmosphere, and composition. For medium-size missions, Vision and Voyages for Planetary Science in the Decade 2013-2022 recommends that NASA select two new missions to be included in its New Frontiers program, which explores the solar system with frequent, mid-size spacecraft missions. If NASA cannot stay within budget for any of these proposed flagship projects, it should focus on smaller, less expensive missions first. Vision and Voyages for Planetary Science in the Decade 2013-2022 suggests that the National Science Foundation expand its funding for existing laboratories and establish new facilities as needed. It also recommends that the program enlist the participation of international partners. This report is a vital resource for government agencies supporting space science, the planetary science community, and the public.







Remote Sensing in Applied Geophysics


Book Description

The Special Issue is focused on recent and upcoming advances in the combined application of remote sensing and applied geophysics. Applied geophysics analyzes the distribution of physical properties in the subsurface for a wide range of geological, engineering, and environmental applications at different scales. Seismic, electrical, magnetic, and electromagnetic methods are among the most applied and well-established geophysical techniques. These methods share the advantages of being non-invasive and exploring wide areas of investigation with respect to conventional methods (e.g., drilling). Geophysical surveys are usually carried out deploying or moving the appropriate instrumentation directly on the ground surface. However, recent technological advances have resulting in the development of innovative acquisition systems becoming more typical of the remote sensing community (e.g., airborne surveys). While applied geophysics mainly focuses on the subsurface, typical remote sensing techniques have the ability to accurately image the Earth’s surface with high-resolution investigations carried out by means of terrestrial, airborne, or satellite-based platforms. The integration of surface and subsurface information is often crucial for several purposes, including the processing of geophysical data, the characterization and time-lapse monitoring of surface and near-surface targets, and the reconstruction of highly detailed and comprehensive 3D models of the investigated areas. Recent contributions showing the added value of surface reconstruction and/or monitoring in the processing, interpretation, and cross-comparison of geophysical techniques for archaeological, environmental, and engineering studies are collected in this book. Pioneering geophysical acquisitions by means of innovative remote systems are also presented.