Geospatial Analytics for Environmental Pollution Modeling


Book Description

This book aims to provide a comprehensive study on various aspects of environmental pollution dynamics using geospatial technology and modeling techniques. The utility of geospatial technology will be demonstrated for the effective study of environmental pollution, as space and location are very important for effective environmental health surveillance. The timeliness of the work is due to the increasing relevance of geospatial technology applications in environmental health investigations. Moreover, different types of pollution are covered in detail, including air and soil, all of which are analyzed using latest Remote Sensing and GIS technology. The basics of environmental pollution and its impacts are covered in the book's first part, while the second part focuses on the use of geospatial technology in investigating and modeling various instances of environmental pollution. The third part discusses policy measures for mitigating environmental pollution hazards, using geospatial analyses and data to craft informed policy decisions. The primary audience for the book is researchers working in the field of environmental pollution with incorporation of geospatial technology, including upper-level undergraduate and graduate students taking courses in remote sensing and its environmental applications. The secondary audience is academicians, planners, environmentalists and policymakers working in the field of environment protection and management.




Geospatial Analysis of Environmental Health


Book Description

This book focuses on a range of geospatial applications for environmental health research, including environmental justice issues, environmental health disparities, air and water contamination, and infectious diseases. Environmental health research is at an exciting point in its use of geotechnologies, and many researchers are working on innovative approaches. This book is a timely scholarly contribution in updating the key concepts and applications of using GIS and other geospatial methods for environmental health research. Each chapter contains original research which utilizes a geotechnical tool (Geographic Information Systems (GIS), remote sensing, GPS, etc.) to address an environmental health problem. The book is divided into three sections organized around the following themes: issues in GIS and environmental health research; using GIS to assess environmental health impacts; and geospatial methods for environmental health. Representing diverse case studies and geospatial methods, the book is likely to be of interest to researchers, practitioners and students across the geographic and environmental health sciences. The authors are leading researchers and practitioners in the field of GIS and environmental health.




Advanced Air Pollution


Book Description

Leading air quality professionals describe different aspects of air pollution. The book presents information on four broad areas of interest in the air pollution field; the air pollution monitoring; air quality modeling; the GIS techniques to manage air quality; the new approaches to manage air quality. This book fulfills the need on the latest concepts of air pollution science and provides comprehensive information on all relevant components relating to air pollution issues in urban areas and industries. The book is suitable for a variety of scientists who wish to follow application of the theory in practice in air pollution. Known for its broad case studies, the book emphasizes an insightful of the connection between sources and control of air pollution, rather than being a simple manual on the subject.




Geographical Information Systems in Hydrology


Book Description

The last few years have witnessed an enormous interest in application of GIS in hydrology and water resources. This is partly evidenced by organization of sev eral national and international symposia or conferences under the sponsorship of various professional organizations. This increased interest is, in a large measure, in response to growing public sensitivity to environmental quality and management. The GIS technology has the ability to capture, store, manipulate, analyze, and visualize the diverse sets of geo-referenced data. On the other hand, hydrology is inherently spatial and distributed hydrologic models have large data requirements. The integration of hydrology and GIS is therefore quite natural. The integration involves three major components: (1) spatial data construction, (2) integration of spatial model layers, and (3) GIS and model interface. GIS can assist in design, calibration, modification and comparison of models. This integration is spreading worldwide and is expected to accelerate in the foreseeable future. Substantial op portunities exist in integration of GIS and hydrology. We believe there are enough challenges in use of GIS for conceptualizing and modeling complex hydrologic processes and for globalization of hydrology. The motivation for this book grew out of the desire to provide under one cover a range of applications of GIS tech nology in hydrology. It is hoped that the book will stimulate others to write more comprehensive texts on this subject of growing importance.




Spatial Modeling and Assessment of Environmental Contaminants


Book Description

This book demonstrates the measurement, monitoring and mapping of environmental contaminants in soil & sediment, surface & groundwater and atmosphere. This book explores state-of-art techniques based on methodological and modeling in modern geospatial techniques specifically focusing on the recent trends in data mining techniques and robust modeling. It also presents modifications of and improvements to existing control technologies for remediation of environmental contaminants. In addition, it includes three separate sections on contaminants, risk assessment and remediation of different existing and emerging pollutants. It covers major topics such as: Radioactive Wastes, Solid and Hazardous Wastes, Heavy Metal Contaminants, Arsenic Contaminants, Microplastic Pollution, Microbiology of Soil and Sediments, Soil Salinity and Sodicity, Aquatic Ecotoxicity Assessment, Fluoride Contamination, Hydrochemistry, Geochemistry, Indoor Pollution and Human Health aspects. The content of this book will be of interest to researchers, professionals, and policymakers whose work involves environmental contaminants and related solutions.




Geospatial Analytics for Environmental Pollution Modeling


Book Description

This book aims to provide a comprehensive study on various aspects of environmental pollution dynamics using geospatial technology and modeling techniques. The utility of geospatial technology will be demonstrated for the effective study of environmental pollution, as space and location are very important for effective environmental health surveillance. The timeliness of the work is due to the increasing relevance of geospatial technology applications in environmental health investigations. Moreover, different types of pollution are covered in detail, including air and soil, all of which are analyzed using latest Remote Sensing and GIS technology. The basics of environmental pollution and its impacts are covered in the book's first part, while the second part focuses on the use of geospatial technology in investigating and modeling various instances of environmental pollution. The third part discusses policy measures for mitigating environmental pollution hazards, using geospatial analyses and data to craft informed policy decisions. The primary audience for the book is researchers working in the field of environmental pollution with incorporation of geospatial technology, including upper-level undergraduate and graduate students taking courses in remote sensing and its environmental applications. The secondary audience is academicians, planners, environmentalists and policymakers working in the field of environment protection and management.




Advances in Air Pollution Modeling for Environmental Security


Book Description

The protection of our environment is one of the major problems in the society. More and more important physical and chemical mechanisms are to be added to the air pollution models. Moreover, new reliable and robust control strategies for keeping the pollution caused by harmful compounds under certain safe levels have to be developed and used in a routine way. Well based and correctly analyzed large mathematical models can successfully be used to solve this task. The use of such models leads to the treatment of huge computational tasks. The efficient solution of such problems requires combined research from specialists working in different fields. The aim of the NATO Advanced Research Workshop (NATO ARW) entitled “Advances in Air Pollution Modeling for Environmental Security” was to invite specialists from all areas related to large-scale air pollution modeling and to exchange information and plans for future actions towards improving the reliability and the scope of application of the existing air pollution models and tools. This ARW was planned to be an interdisciplinary event, which provided a forum for discussions between physicists, meteorologists, chemists, computer scientists and specialists in numerical analysis about different ways for improving the performance and the quality of the results of different air pollution models.




GIS and Environmental Modeling


Book Description

GIS and Environmental Modeling: Progress and Research Issues Michael F. Goodchild, Louis T. Steyaert, Bradley O. Parks, Carol Johnston, David Maidment, Michael Crane, and Sandi Glendinning, Editors With growing pressure on natural resources and landscapes there is an increasing need to predict the consequences of any changes to the environment. Modelling plays an important role in this by helping our understanding of the environment and by forecasting likely impacts. In recent years moves have been made to link models to Geographical Information Systems to provide a means of analysing changes over an area as well as over time. GIS and Environmental Modeling explores the progress made to date in integrating these two software systems. Approaches to the subject are made from theoretical, technical as well as data stand points. The existing capabilities of current systems are described along with important issues of data availability, accuracy and error. Various case studies illustrate this and highlight the common concepts and issues that exist between researchers in different environmental fields. The future needs and prospects for integrating GIS and environmental models are also explored with developments in both data handling and modelling discussed. The book brings together the knowledge and experience of over 100 researchers from academic, commercial and government backgrounds who work in a wide range of disciplines. The themes followed in the text provide a fund of knowledge and guidance for those involved in environmental modelling and GIS. The book is easily accessible for readers with a basic GIS knowledge and the ideas and results of the research are clearly illustrated with both colour and black and white graphics.




GIS for Environmental Applications


Book Description

GIS for Environmental Applications provides a practical introduction to the principles, methods, techniques and tools in GIS for spatial data management, analysis, modelling and visualisation, and their applications in environmental problem solving and decision making. It covers the fundamental concepts, principles and techniques in spatial data, spatial data management, spatial analysis and modelling, spatial visualisation, spatial interpolation, spatial statistics, and remote sensing data analysis, as well as demonstrates the typical environmental applications of GIS, including terrain analysis, hydrological modelling, land use analysis and modelling, ecological modelling, and ecosystem service valuation. Case studies are used in the text to contextualise these subjects in the real world, examples and detailed tutorials are provided in each chapter to show how the GIS techniques and tools introduced in the chapter can be implemented using ESRI ArcGIS (a popular GIS software system for environmental applications) and other third party extensions to ArcGIS to address. The emphasis is placed on how to apply or implement the concepts and techniques of GIS through illustrative examples with step-by-step instructions and numerous annotated screen shots. The features include: Over 350 figures and tables illustrating how to apply or implement the concepts and techniques of GIS Learning objectives along with the end-of-chapter review questions Authoritative references at the end of each chapter GIS data files for all examples as well as PowerPoint presentations for each chapter downloadable from the companion website. GIS for Environmental Applications weaves theory and practice together, assimilates the most current GIS knowledge and tools relevant to environmental research, management and planning, and provides step-by-step tutorials with practical applications. This volume will be an indispensable resource for any students taking a module on GIS for the environment.




Spatiotemporal Analysis of Air Pollution and Its Application in Public Health


Book Description

Spatiotemporal Analysis of Air Pollution and Its Application in Public Health reviews, in detail, the tools needed to understand the spatial temporal distribution and trends of air pollution in the atmosphere, including how this information can be tied into the diverse amount of public health data available using accurate GIS techniques. By utilizing GIS to monitor, analyze and visualize air pollution problems, it has proven to not only be the most powerful, accurate and flexible way to understand the atmosphere, but also a great way to understand the impact air pollution has in diverse populations. This book is essential reading for novices and experts in atmospheric science, geography and any allied fields investigating air pollution. - Introduces readers to the benefits and uses of geo-spatiotemporal analyses of big data to reveal new and greater understanding of the intersection of air pollution and health - Ties in machine learning to improve speed and efficacy of data models - Includes developing visualizations, historical data, and real-time air pollution in large geographic areas