Transactions of the ASAE.


Book Description




Basic Steps in Geostatistics: The Variogram and Kriging


Book Description

This brief will provide a bridge in succinct form between the geostatistics textbooks and the computer manuals for `push-button' practice. It is becoming increasingly important for practitioners, especially neophytes, to understand what underlies modern geostatistics and the currently available software so that they can choose sensibly and draw correct conclusions from their analysis and mapping. The brief will contain some theory, but only that needed for practitioners to understand the essential steps in analyses. It will guide readers sequentially through the stages of properly designed sampling, exploratory data analysis, variography (computing the variogram and modelling it), followed by ordinary kriging and finally mapping kriged estimates and their errors. There will be short section on trend and universal kriging. Other types of kriging will be mentioned so that readers can delve further in the substantive literature to tackle more complex tasks.




Geostatistics for the Next Century


Book Description

To honour the remarkable contribution of Michel David in the inception, establishment and development of Geostatistics, and to promote the essence of his work, an international Forum entitled Geostatistics for the Next Century was convened in Montreal in June 1993. In order to enhance communication and stimulate geostatistical innovation, research and development, the Forum brought together world leading researchers and practitioners from five continents, who discussed-debated current problems, new technologies and futuristic ideas. This volume contains selected peer-reviewed papers from the Forum, together with comments by participants and replies by authors. Although difficult to capture the spontaneity and range of a debate, comments and replies should further assist in the promotion of ideas, dialogue and criticism, and are consistent with the spirit of the Forum. The contents of this volume are organized following the Forum's thematic sessions. The role of theme sessions was not only to stress important topics of tOday but in addition, to emphasize common ground held among diverse areas of geostatistical work and the need to strengthen communication between these areas. For this reason, any given section of this book may include papers from theory to applications, in mining, petroleum, environment, geohydrology, image processing.




GSLIB


Book Description

This successful text has been extensively revised to cover new algorithms and applications.




Geostatistical Methods for Reservoir Geophysics


Book Description

This book presents a geostatistical framework for data integration into subsurface Earth modeling. It offers extensive geostatistical background information, including detailed descriptions of the main geostatistical tools traditionally used in Earth related sciences to infer the spatial distribution of a given property of interest. This framework is then directly linked with applications in the oil and gas industry and how it can be used as the basis to simultaneously integrate geophysical data (e.g. seismic reflection data) and well-log data into reservoir modeling and characterization. All of the cutting-edge methodologies presented here are first approached from a theoretical point of view and then supplemented by sample applications from real case studies involving different geological scenarios and different challenges. The book offers a valuable resource for students who are interested in learning more about the fascinating world of geostatistics and reservoir modeling and characterization. It offers them a deeper understanding of the main geostatistical concepts and how geostatistics can be used to achieve better data integration and reservoir modeling.







Spatial Linear Models for Environmental Data


Book Description

Many applied researchers equate spatial statistics with prediction or mapping, but this book naturally extends linear models, which includes regression and ANOVA as pillars of applied statistics, to achieve a more comprehensive treatment of the analysis of spatially autocorrelated data. Spatial Linear Models for Environmental Data, aimed at students and professionals with a master’s level training in statistics, presents a unique, applied, and thorough treatment of spatial linear models within a statistics framework. Two subfields, one called geostatistics and the other called areal or lattice models, are extensively covered. Zimmerman and Ver Hoef present topics clearly, using many examples and simulation studies to illustrate ideas. By mimicking their examples and R code, readers will be able to fit spatial linear models to their data and draw proper scientific conclusions. Topics covered include: Exploratory methods for spatial data including outlier detection, (semi)variograms, Moran’s I, and Geary’s c. Ordinary and generalized least squares regression methods and their application to spatial data. Suitable parametric models for the mean and covariance structure of geostatistical and areal data. Model-fitting, including inference methods for explanatory variables and likelihood-based methods for covariance parameters. Practical use of spatial linear models including prediction (kriging), spatial sampling, and spatial design of experiments for solving real world problems. All concepts are introduced in a natural order and illustrated throughout the book using four datasets. All analyses, tables, and figures are completely reproducible using open-source R code provided at a GitHub site. Exercises are given at the end of each chapter, with full solutions provided on an instructor’s FTP site supplied by the publisher.