Geostatistical Glossary and Multilingual Dictionary


Book Description

Geostatistics is a branch of mathematics that deals with the sampling, analysis, interpretation and display of phenomena that fluctuate in space. Although not all geostatistical methods are probabilistic in nature, the most important accomplishments in the field have been in estimation and forecasting, extending probabilistic methods of stochastic processes and time series analysis to the spatial domain. This book gives the only available comprehensive collection of definitions of geostatistical terms. It lists more than 600 entries selected from the book and journal literature through the end of 1989. Where appropriate, multiple meanings have been included for specific terms. Cross-references abound to help the reader when the definitions of a word leads to the search for other terms. Although all the definitions are in English, equivalent terms are provided in alphabetized lists in Chinese, French, German, Greek, Portuguese, Russian and Spanish. This volume will provide a useful reference for students, scientists, engineers, and others concerned with the meaning of terms found in the geostatistical literature and heard in professional practice. Definitions and entries have been prepared with multiple levels of rigor and complexity, in order to provide help to a readership that may range from inexperienced practitioners to advanced researchers.







Geostatistical Analysis of Compositional Data


Book Description

Geostatistical Analysis of Compositional Data provides a comprehensive coverage of the theory and practice of analysis of data that have both spatial and compositional dependence, characteristics of most earth science and environmental measurements.




Geostatistics Valencia 2016


Book Description

This book contains selected contributions presented at the 10th International Geostatistics Congress held in Valencia from 5 to 9 September, 2016. This is a quadrennial congress that serves as the meeting point for any engineer, professional, practitioner or scientist working in geostatistics. The book contains carefully reviewed papers on geostatistical theory and applications in fields such as mining engineering, petroleum engineering, environmental science, hydrology, ecology, and other fields.




Geostatistical Reservoir Modeling


Book Description

A revised edition that provides a full update on the most current methods, tools, and research in petroleum geostatistics.




Geostatistics for the Next Century


Book Description

To honour the remarkable contribution of Michel David in the inception, establishment and development of Geostatistics, and to promote the essence of his work, an international Forum entitled Geostatistics for the Next Century was convened in Montreal in June 1993. In order to enhance communication and stimulate geostatistical innovation, research and development, the Forum brought together world leading researchers and practitioners from five continents, who discussed-debated current problems, new technologies and futuristic ideas. This volume contains selected peer-reviewed papers from the Forum, together with comments by participants and replies by authors. Although difficult to capture the spontaneity and range of a debate, comments and replies should further assist in the promotion of ideas, dialogue and criticism, and are consistent with the spirit of the Forum. The contents of this volume are organized following the Forum's thematic sessions. The role of theme sessions was not only to stress important topics of tOday but in addition, to emphasize common ground held among diverse areas of geostatistical work and the need to strengthen communication between these areas. For this reason, any given section of this book may include papers from theory to applications, in mining, petroleum, environment, geohydrology, image processing.










Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling


Book Description

Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development.




Solved Problems in Geostatistics


Book Description

This unique book presents a learn-by-doing introduction to geostatistics. Geostatistics provides the essential numerical tools for addressing research problems that are encountered in fields of study such as geology, engineering, and the earth sciences. Illustrating key methods through both theoretical and practical exercises, Solved Problems in Geostatistics is a valuable and well-organized collection of worked-out problems that allow the reader to master the statistical techniques for modeling data in the geological sciences. The book's scope of coverage begins with the elements from statistics and probability that form the foundation of most geostatistical methodologies, such as declustering, debiasing methods, and Monte Carlo simulation. Next, the authors delve into three fundamental areas in conventional geostatistics: covariance and variogram functions; kriging; and Gaussian simulation. Finally, special topics are introduced through problems involving utility theory, loss functions, and multiple-point geostatistics. Each topic is treated in the same clearly organized format. First, an objective presents the main concepts that will be established in the section. Next, the background and assumptions are outlined, supplying the comprehensive foundation that is necessary to begin work on the problem. A solution plan demonstrates the steps and considerations that have to be taken when working with the exercise, and the solution allows the reader to check their work. Finally, a remarks section highlights the overarching principles and noteworthy aspects of the problem. Additional exercises are available via a related Web site, which also includes data related to the book problems and software programs that facilitate their resolution. Enforcing a truly hands-on approach to the topic, Solved Problems in Geostatistics is an indispensable supplement for courses on geostatistics and spatial statistics a the upper-undergraduate and graduate levels.It also serves as an applied reference for practicing professionals in the geosciences.