Geostatistical Simulations


Book Description

When this two-day meeting was proposed, it was certainly not conceived as a celebration, much less as a party. However, on reflection, this might have been a wholly appropriate gesture because geostatistical simulation came of age this year: it is now 21 years since it was first proposed and implemented in the form of the turning bands method. The impetus for the original development was the mining industry, principally the problems encountered in mine planning and design based on smoothed estimates which did not reflect the degree of variability and detail present in the real, mined values. The sustained period of development over recent years has been driven by hydrocarbon applications. In addition to the original turning bands method there are now at least six other established methods of geostatistical simulation. Having reached adulthood, it is entirely appropriate that geostatistical simulation should now be subjected to an intense period of reflection and assessment. That we have now entered this period was evident in many of the papers and much of the discussion at the Fontainebleau meeting. Many questions were clearly articulated for the first time and, although many ofthem were not unambiguously answered, their presentation at the meeting and publication in this book will generate confirmatory studies and further research.




Geostatistical Simulation


Book Description

This book deals with the estimation of natural resources using the Monte Carlo methodology. It includes a set of tools to describe the morphological, statistical and stereological properties of spatial random models. Furthermore, the author presents a wide range of spatial models, including random sets and functions, point processes and object populations applicable to the geosciences. The text is based on a series of courses given in the USA and Latin America to civil, mining and petroleum engineers as well as graduate students in statistics. It is the first book to discuss the geostatistical simulation techniques in such a specific way.




Geostatistics


Book Description

Praise for the First Edition ". . . a readable, comprehensive volume that . . . belongs on the desk, close at hand, of any serious researcher or practitioner." Mathematical Geosciences The state of the art in geostatistics Geostatistical models and techniques such as kriging and stochastic multi-realizations exploit spatial correlations to evaluate natural resources, help optimize their development, and address environmental issues related to air and water quality, soil pollution, and forestry. Geostatistics: Modeling Spatial Uncertainty, Second Edition presents a comprehensive, up-to-date reference on the topic, now featuring the latest developments in the field. The authors explain both the theory and applications of geostatistics through a unified treatment that emphasizes methodology. Key topics that are the foundation of geostatistics are explored in-depth, including stationary and nonstationary models; linear and nonlinear methods; change of support; multivariate approaches; and conditional simulations. The Second Edition highlights the growing number of applications of geostatistical methods and discusses three key areas of growth in the field: New results and methods, including kriging very large datasets; kriging with outliers; nonse??parable space-time covariances; multipoint simulations; pluri-gaussian simulations; gradual deformation; and extreme value geostatistics Newly formed connections between geostatistics and other approaches such as radial basis functions, Gaussian Markov random fields, and data assimilation New perspectives on topics such as collocated cokriging, kriging with an external drift, discrete Gaussian change-of-support models, and simulation algorithms Geostatistics, Second Edition is an excellent book for courses on the topic at the graduate level. It also serves as an invaluable reference for earth scientists, mining and petroleum engineers, geophysicists, and environmental statisticians who collect and analyze data in their everyday work.




Plurigaussian Simulations in Geosciences


Book Description

Simulation is the fastest developing branch of geostatistics and simulating facies inside reservoirs and orebodies is the most exciting part of this. Several methods have been developed to do this (sequential indicator simulations, Boolean simulations, Markov chains and plurigaussian simulations). This book focuses on the last type of simulations. It presents the theory required to understand the method, along practical examples of applications in mining and the oil industry as well as tutorial exercises. Demonstration software to illustrate how these simulations work is available on http://pluridemo.geosciences.mines-paristech.fr Since the publication of the first edition, enormous numbers of papers have appeared in the literature on the subject. Plurigaussian simulations are now the preferred method for simulating facies in both mining & the oil industry. The new edition contains new case studies in both mining & petroleum, together with an extensively updated theory section.




geoENV IV — Geostatistics for Environmental Applications


Book Description

The fourth edition of the European Conference on Geostatistics for Environmental Applications (geoENV IV) took place in Barcelona, November 27-29, 2002. As a proof that there is an increasing interest in environmental issues in the geostatistical community, the conference attracted over 100 participants, mostly Europeans (up to 10 European countries were represented), but also from other countries in the world. Only 46 contributions, selected out of around 100 submitted papers, were invited to be presented orally during the conference. Additionally 30 authors were invited to present their work in poster format during a special session. All oral and poster contributors were invited to submit their work to be considered for publication in this Kluwer series. All papers underwent a reviewing process, which consisted on two reviewers for oral presentations and one reviewer for posters. The book opens with one keynote paper by Philippe Naveau. It is followed by 40 papers that correspond to those presented orally during the conference and accepted by the reviewers. These papers are classified according to their main topic. The list of topics show the diversity of the contributions and the fields of application. At the end of the book, summaries of up to 19 poster presentations are added. The geoENV conferences stress two issues, namely geostatistics and environmental applications. Thus, papers can be classified into two groups.




Plurigaussian Simulations in Geosciences


Book Description

Simulations are the fastest developing branch in geostatistics, and simulating the acies inside reservoirs and ore bodies is the most exciting part of this. Several methods have been developed to do this (sequential indicator simulations, Boolean methods, Markov chains and plurigaussian simulations). This book focusses on the last type of simulation. It develops the theory required to understand the method together and presents practical examples of applications in mining and petroleum, plus tutorial examples. An accompanying CD-ROM featuring demonstration software and color images complements the printed book.




Geomorphometry


Book Description

Geomorphometry is the science of quantitative land-surface analysis. It draws upon mathematical, statistical, and image-processing techniques to quantify the shape of earth's topography at various spatial scales. The focus of geomorphometry is the calculation of surface-form measures (land-surface parameters) and features (objects), which may be used to improve the mapping and modelling of landforms to assist in the evaluation of soils, vegetation, land use, natural hazards, and other information. This book provides a practical guide to preparing Digital Elevation Models (DEM) for analysis and extracting land-surface parameters and objects from DEMs through a variety of software. It further offers detailed instructions on applying parameters and objects in soil, agricultural, environmental and earth sciences. This is a manual of state-of-the-art methods to serve the various researchers who use geomorphometry. Soil scientists will use this book to further learn the methods for classifying and measuring the chemical, biological, and fertility properties of soils and gain a further understaing of the role of soil as a natural resource. Geologists will find value in the instruction this book provides for measuring the physical features of the soil such as elevation, porosity, and structure which geologists use to predict natural disasters such as earthquakes, volcanoes, and flooding. * Technical details on a variety of software packages allow researchers to solve real-life mapping issues * Provides soil and agronomy researchers best practice techniques for soil data analysis to assist in enhanced land-use and planning * Offers geologists essential tactics for better environmental management by providing a comprehensive analysis of the physical features of soil * Companion website includes access to the latest technological advancements previously unpublished in any other comprehensive source: geomorphometry software, DEM data sources, and applications




Model-based Geostatistics


Book Description

This volume is the first book-length treatment of model-based geostatistics. The text is expository, emphasizing statistical methods and applications rather than the underlying mathematical theory. Analyses of datasets from a range of scientific contexts feature prominently, and simulations are used to illustrate theoretical results. Readers can reproduce most of the computational results in the book by using the authors' software package, geoR, whose usage is illustrated in a computation section at the end of each chapter. The book assumes a working knowledge of classical and Bayesian methods of inference, linear models, and generalized linear models.




Machine Learning for Spatial Environmental Data


Book Description

This book discusses machine learning algorithms, such as artificial neural networks of different architectures, statistical learning theory, and Support Vector Machines used for the classification and mapping of spatially distributed data. It presents basic geostatistical algorithms as well. The authors describe new trends in machine lea




Evaluation of Mineral Reserves


Book Description

This book addresses the practice of geostatistical simulation to evaluation of mineral reserves, prediction of recovered tonnages and mineral grades and the impact of mining dilution. Such prediction is absolutely critical for mine planning and investment decisions, yet it cannot be made on maps directly interpolated from present data. Various dilution factors need to be introduced to account for · the support effect: mining unit volumes are vastly different from composite data unit volumes · the information effect: future selection of ore/waste will be based on vastly different data than that presently available. Geostatistical simulations allow a rigorous evaluation of these effects on reserves recovery. These stochastic simulations have the potential to be for the mining industry what a wind tunnel is for aircraft design. This book is written by two expert geostatisticians--Journel is the pioneer of mining geostatistics--and established academics.