An Introduction to Geosynthetic Engineering


Book Description

The development of the use of polymeric materials in the form of geosynthetics has brought about major changes in the civil engineering industry. Geosynthetics are available in a wide range of compositions appropriate to different applications and environments. Over the past three to four decades, civil engineers have grown increasingly interested




Fundamentals of Geosynthetic Engineering


Book Description

The development of polymeric materials in the form of geosynthetics has brought major changes to the area of Civil Engineering. Increasing interest in these materials and their use has resulted in significant advances in their practical applications in the last few decades. Following this progress, geosynthetics have become a common and favoured co




Fundamentals of Geosynthetic Engineering


Book Description

Fundamentals of Geosynthetic Engineering provides an overview of the basic concepts of this subject, especially meeting the requirements of students in civil engineering as well as of practising civil engineers who have not been educated in geosynthetics during their university training. All major aspects related to the field applications, including application guidelines and descriptions of case studies, have been included with a view to generate full confidence in the engineering use of geosynthetics. The book contains a large number of line drawings, sketches, graphs, photographs, and tables to explain the (basic) concepts of all the topics covered. Intended to explain the fundamentals of geosynthetic engineering. Readers will find this book interactive and wll understand the basic concepts of most of the topics by self-reading only.




Geosynthetics and Their Applications


Book Description

Presents topics that are based on field application areas for geosynthetics in civil engineering. This book also includes case histories and practical aspects of the application of geosynthetics, along with developments and references. It is useful for students and engineers in search of approaches to solutions for civil engineering problems.




Geosynthetics in Civil Engineering


Book Description

Geosynthetics are man-made polymer-based materials which facilitate cost effective building, environmental, transportation and other construction projects. Given their versatility, geosynthetics are a vital material in all aspects of civil engineering.The first section of the book covers the fundamentals of geosynthetics. Chapters discuss the design and durability of geosynthetics together with their material properties and international standards governing their use. Building on these foundations, part two examines the various applications of geosynthetics in areas such as filters, separators, landfills, barriers and foundation materials. The book concludes by reviewing methods of quality assurance and the service life of geosynthetics.Written by an international team of contributors, Geosynthetics in civil engineering is an essential reference to all those involved in civil engineering. - Discusses the fundamentals of geosynthetics - Examines various applications in areas such as filters, separators, landfills and foundation materials - Reviews quality assurance and the service life of geosynthetics




Geosynthetics in Civil and Environmental Engineering


Book Description

Geosynthetics in Civil and Environmental Engineering presents contributions from the 4th Asian Regional Conference on Geosynthetics held in Shanghai, China. The book covers a broad range of topics, such as: fundamental principles and properties of geosynthetics, testing and standards, reinforcement, soil improvement and ground improvement, filter and drainage, landfill engineering, geosystem, transport, geosynthetics-pile support system and geocell, hydraulic application, and ecological techniques. Special case studies as well as selected government-sponsored projects such as the Three Gorges Dam, Qinghai-Tibet Railway, and Changi Land reclamation project are also discussed. The book will be an invaluable reference in this field.




Handbook of Geosynthetic Engineering


Book Description

This is a book to which students (at all levels) and engineers in search of novel approaches to solutions for civil engineering problems can refer. The topics presented are based on major field application areas for geosynthetics in civil engineering.




Geosynthetics and Geosystems in Hydraulic and Coastal Engineering


Book Description

A review of the existing applications of geosynthetics and geosystems in hydraulic and coastal engineering, with an overview on material specifications, structural components, relevant tools during conceptual and detail design, possible applications, and execution aspects. A more detailed description is given of new or lesser-known systems and applications. Additional basic information on design methodology and geosynthetics is included to provide a basic framework of information for design purposes.




Geosynthetic Reinforced Soil (GRS) Walls


Book Description

The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.




Geosynthetic Encased Columns for Soft Soil Improvement


Book Description

The geosynthetic encased column (GEC) is a relatively recent method developed for soft soil improvement. The method was firstly introduced as a concept in the 1980s and first practical applications started in the 1990s. GECs have been widely used in some parts of the world for the last three decades. However, there is no book in the literature summarizing the knowledge accumulated during this period in relation to this soft ground improvement technique. The purpose of this book is to provide readers with the GEC fundamentals and practical applications. Chapter 1 presents the general principles of this ground improvement technique including the methods used for GEC installation and how the material properties may be selected. Chapter 2 presents the design methods, thus settlement calculations by means of analytical methods and stability calculations by limit equilibrium methods are explained in detail. Chapter 3 presents calculation examples illustrating the usual steps to be done for both service limit state and ultimate limit state designs. Then field performances exemplifying practical applications of the GEC technique are presented in Chapter 4 for some case histories. Following numerical analyses, often used in design to complement analytical methods, are presented in Chapter 5. Annexes I and II at the end contain the charts developed to perform settlement calculations. The book combines the experiences of four authors with different academic and industry backgrounds to describe GEC design and performance. It is aimed at civil engineers in general, particularly geotechnical engineers, either working in design or in practice, at graduate students, and at senior undergraduate students.