Gettering Defects in Semiconductors


Book Description

Gettering Defects in Semiconductors fulfills three basic purposes: – to systematize the experience and research in exploiting various gettering techniques in microelectronics and nanoelectronics; – to identify new directions in research, particularly to enhance the perspective of professionals and young researchers and specialists; – to fill a gap in the contemporary literature on the underlying semiconductor-material theory. The authors address not only well-established gettering techniques but also describe contemporary trends in gettering technologies from an international perspective. The types and properties of structural defects in semiconductors, their generating and their transforming mechanisms during fabrication are described. The primary emphasis is placed on classifying and describing specific gettering techniques, their specificity arising from both their position in a general technological process and the regimes of their application. This book addresses both engineers and material scientists interested in semiconducting materials theory and also undergraduate and graduate students in solid–state microelectronics and nanoelectronics. A comprehensive list of references provides readers with direction for further reading.




Extended Defects in Semiconductors


Book Description

A discussion of the basic properties of structurally extended defects, their effect on the electronic properties of semiconductors, their role in semiconductor devices, and techniques for their characterization. This text is suitable for advanced undergraduate and graduate students in materials science and engineering, and for those studying semiconductor physics.




Gettering and Defect Engineering in Semiconductor Technology IV


Book Description

Proceedings of the 4th International Conference on Gettering and Defect Engineering In Semiconductor Technology (GADEST '91), Frankfurt, Germany, October 1991




Defects in Semiconductors 15


Book Description

Proceedings of the 15th International Conference on Defects in Semiconductors (ICDS-15), Budapest, Hungary, 1988




Point and Extended Defects in Semiconductors


Book Description

The systematic study of defects in semiconductors began in the early fifties. FrQm that time on many questions about the defect structure and properties have been an swered, but many others are still a matter of investigation and discussion. Moreover, during these years new problems arose in connection with the identification and char acterization of defects, their role in determining transport and optical properties of semiconductor materials and devices, as well as from the technology of the ever in creasing scale of integration. This book presents to the reader a view into both basic concepts of defect physics and recent developments of high resolution experimental techniques. The book does not aim at an exhaustive presentation of modern defect physics; rather it gathers a number of topics which represent the present-time research in this field. The volume collects the contributions to the Advanced Research Workshop "Point, Extended and Surface Defects in Semiconductors" held at the Ettore Majo rana Centre at Erice (Italy) from 2 to 7 November 1988, in the framework of the International School of Materials Science and Technology. The workshop has brought together scientists from thirteen countries. Most participants are currently working on defect problems in either silicon submicron technology or in quantum wells and superlattices, where point defects, dislocations, interfaces and surfaces are closely packed together.




Physical Chemistry of Semiconductor Materials and Processes


Book Description

The development of solid state devices began a little more than a century ago, with the discovery of the electrical conductivity of ionic solids. Today, solid state technologies form the background of the society in which we live. The aim of this book is threefold: to present the background physical chemistry on which the technology of semiconductor devices is based; secondly, to describe specific issues such as the role of defects on the properties of solids, and the crucial influence of surface properties; and ultimately, to look at the physics and chemistry of semiconductor growth processes, both at the bulk and thin-film level, together with some issues relating to the properties of nano-devices. Divided into five chapters, it covers: Thermodynamics of solids, including phases and their properties and structural order Point defects in semiconductors Extended defects in semiconductors and their interactions with point defects and impurities Growth of semiconductor materials Physical chemistry of semiconductor materials processing With applications across all solid state technologies,the book is useful for advanced students and researchers in materials science, physics, chemistry, electrical and electronic engineering. It is also useful for those in the semiconductor industry.




Semiconductor Silicon Crystal Technology


Book Description

Semiconductor Silicon Crystal Technology provides information pertinent to silicon, which is the dominant material in the semiconductor industry. This book discusses the technology of integrated circuits (ICs) in electronic materials manufacturer. Comprised of eight chapters, this book provides an overview of the basic science, silicon materials, IC device fabrication processes, and their interaction for enhancing both the processes and materials. This text then proceeds with a discussion of the atomic structure and bonding mechanisms in order to understand the nature and formation of crystal structures, which are the fundamentals of material science. Other chapters consider the technological crystallography and classify natural crystal morphologies based on observation. The final chapter deals with the interrelationships among silicon material characteristics, circuit design, and IC fabrication in order to ensure the fabrication of very-large-scale-integration/ultra-large-scale-integration circuits. This book is a valuable resource for graduate students, physicists, engineers, materials scientists, and professionals involved in semiconductor industry.




Point Defects in Group IV Semiconductors


Book Description

A self-consistent model of point defects requires a reliable connection with the experimentally deduced structural, spectroscopic and thermodynamic properties of the defect centres, to allow their unambiguous identification. This book focuses on the properties of defects in group IV semiconductors and seeks to clarify whether full knowledge of their chemical nature can account for several problems encountered in practice. It is shown how difficult the fulfilment of self-consistency conditions can be, even today, after more than four decades of dedicated research work, especially in the case of compound semiconductors, such as SiC, but also in the apparently simple cases of silicon and germanium. The reason for this is that the available microscopic models do not yet account for defect interactions in real solids.







Semiconductor Fabrication


Book Description