Glasses for Optoelectronics


Book Description




Encyclopedia of Glass Science, Technology, History, and Culture Two Volume Set


Book Description

This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.




Chalcogenide Glasses


Book Description

The unique properties and functionalities of chalcogenide glasses make them promising materials for photonic applications. Chalcogenide glasses are transparent from the visible to the near infrared region and can be moulded into lenses or drawn into fibres. They have useful commercial applications as components for lenses for infrared cameras, and chalcogenide glass fibres and optical components are used in waveguides for use with lasers, for optical switching, chemical and temperature sensing and phase change memories. Chalcogenide glasses comprehensively reviews the latest technological advances in this field and the industrial applications of the technology.Part one outlines the preparation methods and properties of chalcogenide glasses, including the thermal properties, structure, and optical properties, before going on to discuss mean coordination and topological constraints in chalcogenide network glasses, and the photo-induced phenomena in chalcogenide glasses. This section also covers the ionic conductivity and physical aging of chalcogenide glasses, deposition techniques for chalcogenide thin films, and transparent chalcogenide glass-ceramics. Part two explores the applications of chalcogenide glasses. Topics discussed include rare-earth-doped chalcogenide glass for lasers and amplifiers, the applications of chalcogenide glasses for infrared sensing, microstructured optical fibres for infrared applications, and chalcogenide glass waveguide devices for all-optical signal processing. This section also discusses the control of light on the nanoscale with chalcogenide thin films, chalcogenide glass resists for lithography, and chalcogenide for phase change optical and electrical memories. The book concludes with an overview of chalcogenide glasses as electrolytes for batteries.Chalcogenide glasses comprehensively reviews the latest technological advances and applications of chalcogenide glasses, and is an essential text for academics, materials scientists and electrical engineers working in the photonics and optoelectronics industry. - Outlines preparation methods and properties, and explores applications of chalcogenide glasses. - Covers the ionic conductivity and physical aging of chalcogenide glasses, deposition techniques for chalcogenide thin films, and transparent chalcogenide glass-ceramics - Discusses the control of light on the nanoscale with chalcogenide thin films, chalcogenide glass resists for lithography, and chalcogenide for phase change optical and electrical memories




Glasses for Photonics


Book Description

Glasses with photonic properties have great potential and are expected to play a significant role in the next generation of multimedia systems. This book is an excellent introduction to recent progress in the development and application of glass with special photonics properties. The authors, two eminent Japanese scientists, thoroughly explain the fundamentals of glass materials in the first chapter, and then proceed to discuss gradient index glass, laser glasses, nonlinear optical glasses, and magneto-optical glasses. Besides in-depth treatment of basic theory, Yamane and Asahara describe actual problems, performance, and applications of glasses. Their work will be of value to graduate students, researchers, and professional engineers in materials science, chemistry, and physics interested in photonics and glass with special properties.




Metal Oxides for Optoelectronics and Optics-Based Medical Applications


Book Description

Metal Oxides for Optoelectronics and Optics-based Medical Applications reviews recent advances in metal oxides and their mechanisms for optoelectronic, photoluminescent and medical applications. In addition, the book examines the integration of key chemistry concepts with nanoelectronics that can improve performance in a diverse range of applications. Sections place a strong emphasis on synthesis processes that can improve the metal oxides' physical properties and the reflected surface chemical changes that can impact their performance in various devices like light-emitting diodes, luminescence materials, solar cells, etc. Finally, the book discusses the challenges associated with the handling and maintenance of metal oxides crystalline properties. This book will be suitable for academics and those working in R&D in industry looking to learn more about cheaper and more effective methods to produce metal oxides for use in the fields of electronics, photonics, biophotonics and engineering. - Reviews the latest advances in the utilization of metal oxide materials in photonics, optoelectronics and optics-based medical applications - Considers the most relevant synthesis strategies for the development of high-performing metal oxide-based devices - Addresses a wide range of metal oxides including photonic crystals, fibers, metastructures, glasses, and more




Insulating Materials for Optoelectronics


Book Description

This review volume presents new developments in the preparation, physical characterization and applications of insulating materials for Optoelectronics. Insulators occupy a leading position as laser and optical amplifier hosts, electrooptic and acoustooptic modulators, frequency doublers and optical parametric oscillators, photorefractive devices and radiator detectors. These applications rely heavily on the development of advanced techniques for the preparation of both bulk and waveguide structures, the adequate knowledge of the microscopic behaviour defects, impurities and a thorough understanding of their response to electromagnetic fields. All these topics relating basic physicochemical aspects and applied performance are authoritatively discussed in the book.




Optical Constants of Inorganic Glasses


Book Description

This book is devoted to the problem of the frequency dispersion of optical constants of inorganic glasses. It is the only source providing a comprehensive discussion of this topic on a unified physical and analytical basis. Optical Constants of Inorganic Glasses presents thorough descriptions of the underlying physical phenomena, analytical models for the optical constants dispersion, and detailed information on the optical constants and related optical characteristics of glasses. The broad scope of the book includes such topics as general relationships for the response of a solid to the effect of an electromagnetic field, and specific features of optical spectrum formation for a glass and the resulting constants. The text details methods for reconstructing the spectra of optical constants from raw experimental spectra of glasses, and provides data on the spectra of optical constants in the IR and VUV ranges and on the IR band parameters for inorganic glasses. It includes factors responsible for the behavior of the refractive index dispersion of glasses in the transparency range. The reference fully details the opportunities provided by the recent version of dispersion analysis for glasses based on the specific analytical model for the complex dielectric constant. Until now, this information was only available in Russian journals. A large quantity of never-before-published data on numerical values of optical constants in the medium and far IR and of IR band frequencies and intensities is given for a wide variety of inorganic glasses. For vitreous silica, data on the optical constants are also given for the broad wavelength range in the VUV. Optical Constants of Inorganic Glasses provides the only comprehensive review of available dispersion formulas and methods for interpolating and extrapolating the refractive indices of glasses in the transparency range. The volume is a valuable resource for researchers, practitioners in the fields of glass technology




Handbook of Optoelectronics


Book Description

Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. (The previous edition of this title was published as Handbook of Optoelectronics, 9780750306461.) John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine.




Germanate Glasses


Book Description

Here's a coherent discussion of the structure, physical properties, and current applications of germanium oxide glasses including fabrication techniques in the form of fibers.




Photonic Glasses


Book Description

This book introduces the fundamental mechanism of photonic glasses - the linear and nonliner optical effects in glass under intense light irradiation: photo-induced absorption, refraction, polarization, frequency, coherence and monochromaticity changes. Emphasis is placed on new developments in the structure, spectroscopy and physics of new glassy materials for photonics applications, such as optical communication, optical data storage, new lasers and new photonic components and devices. The book presents the research results of the authors in new glasses for photonics over the last decade.