Glial-Neuronal Communication in Development and Regeneration


Book Description

This comprehensive volume is a contribution to a new se ries initiated by the NATO Panel on "Gell to Gell Signals in Plants and Animals". The book reflects the outcome of an NATO work shop and bri ngs to mi nd two im portant questions: consideri ng the mass of relevant I iteratu reavai- able, is there any necessity for a new series of books - and considering the flood of compa rable meetings - is there any point in workshops of this nature and their publication? In order to deal with such questions adequately, much more space would be needed than is available in a foreword. Thus, the answers must remain rather superficial and, of course, rather subjective. To simplify the issue, the question of publication can be narrowed down to two fac tors - the financial risk, undertaken by the publisher, and the scientific risk, borne by the editor. If the book is good (with respect to lay-out and content) it will be a success - nothing will be lost the people involved will enhance their reputation! We are left with the question of the usefulness of workshops. Without doubt, it is indeed a useful procedure for experts to come together, in an atmosphere of harmony, and freedom from external pressures and time limitations, to discuss a well-defined theme. Wether in agreement or disagreement, a fair and open forum can be expectet for a variety of contributions.




Glial Physiology and Pathophysiology


Book Description

Glial Physiology and Pathophysiology provides a comprehensive, advanced text on the biology and pathology of glial cells. Coverae includes: the morphology and interrelationships between glial cells and neurones in different parts of the nervous systems the cellular physiology of the different kinds of glial cells the mechanisms of intra- and inter-cellular signalling in glial networks the mechanisms of glial-neuronal communications the role of glial cells in synaptic plasticity, neuronal survival and development of nervous system the cellular and molecular mechanisms of metabolic neuronal-glial interactions the role of glia in nervous system pathology, including pathology of glial cells and associated diseases - for example, multiple sclerosis, Alzheimer's, Alexander disease and Parkinson's Neuroglia oversee the birth and development of neurones, the establishment of interneuronal connections (the 'connectome'), the maintenance and removal of these inter-neuronal connections, writing of the nervous system components, adult neurogenesis, the energetics of nervous tissue, metabolism of neurotransmitters, regulation of ion composition of the interstitial space and many, many more homeostatic functions. This book primes the reader towards the notion that nervous tissue is not divided into more important and less important cells. The nervous tissue functions because of the coherent and concerted action of many different cell types, each contributing to an ultimate output. This reaches its zenith in humans, with the creation of thoughts, underlying acquisition of knowledge, its analysis and synthesis, and contemplating the Universe and our place in it. An up-to-date and fully referenced text on the most numerous cells in the human brain Detailed coverage of the morphology and interrelationships between glial cells and neurones in different parts of the nervous system Describes the role og glial cells in neuropathology Focus boxes highlight key points and summarise important facts Companion website with downloadable figures and slides







Synaptic Function


Book Description

This book consists of five sections. The first section details methods for analyzing both presynaptic and postsynaptic function and emphasizes the molecular aspects of synapses. It describes ongoing studies of neurotransmitter release, voltage- sensitive ion channels, and electronic transmission at gap junctions. The second section focuses on the growing menagerie of neurotransmitters: their catagorization into chemical families, their relation to ion channels, their modulation by second messenger systems and their role in pharmacologic action. The third section considers the important relationship of transmitter diversity and synaptic types to the behavior of actual cellular networks. All of the studies described in these sections point to the necessity of considering interactions between anatomy, chemistry, physiology and pharmacology if synaptic function is to be understood at any one of these levels of analysis.




Glial Cell Development


Book Description

Glial cell function and development has become a major focus of research in the neurosciences. Distinct glial progenitors have been identified, key glial genes have been cloned, and the growth factor regulation of glial survival, proliferation, and function is being unraveled. As a result, it will soon be possible to understand at the molecular level some vital functions, such as myelination and regulation of axon growth and repair. In this book, leading researchers review the current state of knowledge of all classes of glia and describe how this knowledge is being applied to the treatment of human disease. It is a valuable reference book for all researchers in developmental biology and neuroscience.




Enteric Glia


Book Description

The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography




Patterning and Cell Type Specification in the Developing CNS and PNS


Book Description

The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. Particular attention is paid to the effects of abnormal development and on new psychiatric/neurological treatments being developed based on our increased understanding of developmental mechanisms. Each volume in the series consists of review style articles that average 15-20pp and feature numerous illustrations and full references. Volume 1 offers 48 high level articles devoted mainly to patterning and cell type specification in the developing central and peripheral nervous systems. Series offers 144 articles for 2904 full color pages addressing ways in which the nervous system and its components develop Features leading experts in various subfields as Section Editors and article Authors All articles peer reviewed by Section Editors to ensure accuracy, thoroughness, and scholarship Volume 1 sections include coverage of mechanisms which: control regional specification, regulate proliferation of neuronal progenitors and control differentiation and survival of specific neuronal subtypes, and controlling development of non-neural cells




Brain Neurotrauma


Book Description

With the contribution from more than one hundred CNS neurotrauma experts, this book provides a comprehensive and up-to-date account on the latest developments in the area of neurotrauma including biomarker studies, experimental models, diagnostic methods, and neurotherapeutic intervention strategies in brain injury research. It discusses neurotrauma mechanisms, biomarker discovery, and neurocognitive and neurobehavioral deficits. Also included are medical interventions and recent neurotherapeutics used in the area of brain injury that have been translated to the area of rehabilitation research. In addition, a section is devoted to models of milder CNS injury, including sports injuries.




Indwelling Neural Implants


Book Description

Despite enormous advances made in the development of external effector prosthetics over the last quarter century, significant questions remain, especially those concerning signal degradation that occurs with chronically implanted neuroelectrodes. Offering contributions from pioneering researchers in neuroprosthetics and tissue repair, Indwel




The Neuronal Environment


Book Description

Leading neuroscience researchers offer a fresh perspective on neuronal function by examining all its many components-including their pertubation during major disease states-and relate each element to neuronal demands. Topics range from the dependency of neurons on metabolic supply, as well as on both ion and transmitter homeostasis, to their close interaction with the myelin sheath. Also addressed are the astrocytic signaling system that controls synaptic transmission, the extracellular matrix and space as communication systems, the role of blood flow regulation in neuronal demand and in blood-brain barrier function, and inflammation and the neuroimmune system. Insightful and integrative, The Neuronal Environment: Brain Homeostasis in Health and Disease demonstrates a clear new understanding that neurons do not work in isolation, that they need constant interactions with other brain components to process information, and that they are not the only information processing system in the brain.