Harmonic Analysis


Book Description

Conveys the remarkable beauty and applicability of the ideas that have grown from Fourier theory. It presents for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization).




Global Analysis and Harmonic Analysis


Book Description

This book presents the proceedings of a meeting intended to gather researchers working in the fields of harmonic analysis and global analysis to discuss some questions of common interest. About twenty talks covered the principal topics, illustrating the recent interactions between these two fields. The meeting started with a survey on spin geometry and was followed by talks on the spectrum of the Dirac operator in hyperbolic, Kahlerian and pseudo-Riemannian geometry. Different aspects of representation theory were discussed: Schubert cells, unitary representations with reflection symmetry, gradient operators, and Poisson transformations. Another series of talks was devoted to the systematic use of representation theory in global analysis; in particular on the Bernstein-Gelfand-Gelfand sequences in parabolic geometry, the construction of conformally covariant operators, and some refinements of the Kato inequality in Riemannian geometry. Various presentations ranging from general relativity to harmonic maps, by way of $4$-dimensional geometry/topology, Seiberg-Witten theory and the index theorem in $2$-dimensional hyperbolic geometry illustrated the diversity of applications of techniques from harmonic analysis.




Harmonic Analysis Method For Nonlinear Evolution Equations, I


Book Description

This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods.This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.




Harmonic Analysis and Applications


Book Description

The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.




Principles of Harmonic Analysis


Book Description

This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.




The Evolution of Applied Harmonic Analysis


Book Description

A sweeping exploration of the development and far-reaching applications of harmonic analysis such as signal processing, digital music, Fourier optics, radio astronomy, crystallography, medical imaging, spectroscopy, and more. Featuring a wealth of illustrations, examples, and material not found in other harmonic analysis books, this unique monograph skillfully blends together historical narrative with scientific exposition to create a comprehensive yet accessible work. While only an understanding of calculus is required to appreciate it, there are more technical sections that will charm even specialists in harmonic analysis. From undergraduates to professional scientists, engineers, and mathematicians, there is something for everyone here. The second edition of The Evolution of Applied Harmonic Analysis contains a new chapter on atmospheric physics and climate change, making it more relevant for today’s audience. Praise for the first edition: "...can be thoroughly recommended to any reader who is curious about the physical world and the intellectual underpinnings that have lead to our expanding understanding of our physical environment and to our halting steps to control it. Everyone who uses instruments that are based on harmonic analysis will benefit from the clear verbal descriptions that are supplied." — R.N. Bracewell, Stanford University “The book under review is a unique and splendid telling of the triumphs of the fast Fourier transform. I can recommend it unconditionally... Elena Prestini... has taken one major mathematical idea, that of Fourier analysis, and chased down and described a half dozen varied areas in which Fourier analysis and the FFT are now in place. Her book is much to be applauded.” — Society for Industrial and Applied Mathematics “This is not simply a book about mathematics, or even the history of mathematics; it is a story about how the discipline has been applied (to borrow Fourier’s expression) to ‘the public good and the explanation of natural phenomena.’ ... This book constitutes a significant addition to the library of popular mathematical works, and a valuable resource for students of mathematics.” — Mathematical Association of America Reviews




Lectures on Harmonic Analysis


Book Description

This book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is both an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The usual background material is covered in the first few chapters: the Fourier transform, convolution, the inversion theorem, the uncertainty principle and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in the later chapters. These include questions related to the restriction conjecture and the Kakeya conjecture, distance sets, and Fourier transforms of singular measures. These problems are diverse, but often interconnected; they all combine sophisticated Fourier analysis with intriguing links to other areas of mathematics and they continue to stimulate first-rate work. The book focuses on laying out a solid foundation for further reading and research. Technicalities are kept to a minimum, and simpler but more basic methods are often favored over the most recent methods. The clear style of the exposition and the quick progression from fundamentals to advanced topics ensures that both graduate students and research mathematicians will benefit from the book.




Handbook of Global Analysis


Book Description

This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents




Symplectic Methods in Harmonic Analysis and in Mathematical Physics


Book Description

The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.




A First Course in Harmonic Analysis


Book Description

This book introduces harmonic analysis at an undergraduate level. In doing so it covers Fourier analysis and paves the way for Poisson Summation Formula. Another central feature is that is makes the reader aware of the fact that both principal incarnations of Fourier theory, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The final goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. These techniques are explained in the context of matrix groups as a principal example.