High-Order Models in Semantic Image Segmentation


Book Description

High-Order Models in Semantic Image Segmentation reviews recent developments in optimization-based methods for image segmentation, presenting several geometric and mathematical models that underlie a broad class of recent segmentation techniques. Focusing on impactful algorithms in the computer vision community in the last 10 years, the book includes sections on graph-theoretic and continuous relaxation techniques, which can compute globally optimal solutions for many problems. The book provides a practical and accessible introduction to these state-of -the-art segmentation techniques that is ideal for academics, industry researchers, and graduate students in computer vision, machine learning and medical imaging. - Gives an intuitive and conceptual understanding of this mathematically involved subject by using a large number of graphical illustrations - Provides the right amount of knowledge to apply sophisticated techniques for a wide range of new applications - Contains numerous tables that compare different algorithms, facilitating the appropriate choice of algorithm for the intended application - Presents an array of practical applications in computer vision and medical imaging - Includes code for many of the algorithms that is available on the book's companion website




Efficient Algorithms for Global Optimization Methods in Computer Vision


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the International Dagstuhl-Seminar on Efficient Algorithms for Global Optimization Methods in Computer Vision, held in Dagstuhl Castle, Germany, in November 2011. The 8 revised full papers presented were carefully reviewed and selected by 12 lectures given at the seminar. The seminar focused on the entire algorithmic development pipeline for global optimization problems in computer vision: modelling, mathematical analysis, numerical solvers and parallelization. In particular, the goal of the seminar was to bring together researchers from all four fields to analyze and discuss the connections between the different stages of the algorithmic design pipeline.




Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014


Book Description

This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at IBICA2014, the 5th International Conference on Innovations in Bio-inspired Computing and Applications. The aim of IBICA 2014 was to provide a platform for world research leaders and practitioners, to discuss the full spectrum of current theoretical developments, emerging technologies, and innovative applications of Bio-inspired Computing. Bio-inspired Computing remains to be one of the most exciting research areas, and it is continuously demonstrating exceptional strength in solving complex real life problems. The main driving force of the conference was to further explore the intriguing potential of Bio-inspired Computing. IBICA 2014 was held in Ostrava, Czech Republic and hosted by the VSB - Technical University of Ostrava.




Splitting Methods in Communication, Imaging, Science, and Engineering


Book Description

This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.




Advances in Visual Computing


Book Description

It is with greatpleasure that we present the proceedings of the 5th International Symposium on Visual Computing (ISVC 2009), which was held in Las Vegas, Nevada. ISVC o?ers a common umbrella for the four main areas of visual c- puting includingvision,graphics,visualization,andvirtualreality.Thegoalisto provide a forum for researchers, scientists, engineers, and practitioners throu- out the world to present their latest research ?ndings, ideas, developments, and applications in the broader area of visual computing. This year, the program consisted of 16 oral sessions, one poster session, 7 special tracks, and 6 keynote presentations. Also, this year ISVC hosted the Third Semantic Robot Vision Challenge.The responseto the call for papers was verygood;wereceivedover320submissionsfor themainsymposiumfromwhich we accepted 97 papers for oral presentation and 63 papers for poster presen- tion. Special track papers were solicited separately through the Organizing and Program Committees of each track. A total of 40 papers were accepted for oral presentation and 15 papers for poster presentation in the special tracks. All papers were reviewed with an emphasis on potential to contribute to the state of the art in the ?eld. Selection criteria included accuracy and originality of ideas, clarity and signi?cance of results, and presentation quality. The review process was quite rigorous, involving two to three independent blind reviews followed by several days of discussion. During the discussion period we tried to correct anomalies and errors that might have existed in the initial reviews.




Learning to Understand Remote Sensing Images


Book Description

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.




Computer Vision In Medical Imaging


Book Description

The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.




Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies


Book Description

With the advances in image guided surgery for cancer treatment, the role of image segmentation and registration has become very critical. The central engine of any image guided surgery product is its ability to quantify the organ or segment the organ whether it is a magnetic resonance imaging (MRI) and computed tomography (CT), X-ray, PET, SPECT, Ultrasound, and Molecular imaging modality. Sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures present in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning system designs. The focus of this book in towards the state of the art techniques in the area of image segmentation and registration.




Energy Minimization Methods in Computer Vision and Pattern Recognition


Book Description

This book constitutes the refereed proceedings of the 8th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2011, held in St. Petersburg, Russia in July , 2011. The book presents 30 revised full papers selected from a total of 52 submissions. The book is divided in sections on discrete and continuous optimization, segmentation, motion and video, learning and shape analysis.




Information Processing in Medical Imaging


Book Description

This book constitutes the refereed proceedings of the 15th International Conference on Information Processing in Medical Imaging, IPMI'97, held in Poultney, Vermont, USA, in June 1997. The 27 revised full papers presented were selected from a total of 96 submissions; also included are 31 poster presentations. The book is divided into topical sections on shape models and matching, novel imaging methods, segmentation, image quality and statistical character of measured data, registration/mapping, statistical models in functional neuroimaging, and MR analysis and processing.