Introduction to GPS


Book Description

If you're looking for an up-to-date, easy-to-understand treatment of the GPS (Global Positioning System), this one-of-a-kind resource offers you the knowledge you need for your work, without bogging you down with advanced mathematics. It addresses all aspects of the GPS, emphasizes GPS applications, examines the GPS signal structure, and covers the key types of measurement being utilized in the field today.




The Global Positioning System


Book Description

The Global Positioning System (GPS) is a satellite-based navigation system that was originally designed for the U.S. military. However, the number of civilian GPS users now exceeds the military users, and many commercial markets have emerged. This book identifies technical improvements that would enhance military, civilian, and commercial use of the GPS. Several technical improvements are recommended that could be made to enhance the overall system performance.




Global Positioning System


Book Description




Global Positioning System


Book Description

Accompanying CD-ROM contains a number of GPS data sets from several sites. A set of homework problems requires the student to write simple MATLAB code to analyze these data.







Handbook of Position Location


Book Description

A comprehensive review of position location technology — from fundamental theory to advanced practical applications Positioning systems and location technologies have become significant components of modern life, used in a multitude of areas such as law enforcement and security, road safety and navigation, personnel and object tracking, and many more. Position location systems have greatly reduced societal vulnerabilities and enhanced the quality of life for billions of people around the globe — yet limited resources are available to researchers and students in this important field. The Handbook of Position Location: Theory, Practice, and Advances fills this gap, providing a comprehensive overview of both fundamental and cutting-edge techniques and introducing practical methods of advanced localization and positioning. Now in its second edition, this handbook offers broad and in-depth coverage of essential topics including Time of Arrival (TOA) and Direction of Arrival (DOA) based positioning, Received Signal Strength (RSS) based positioning, network localization, and others. Topics such as GPS, autonomous vehicle applications, and visible light localization are examined, while major revisions to chapters such as body area network positioning and digital signal processing for GNSS receivers reflect current and emerging advances in the field. This new edition: Presents new and revised chapters on topics including localization error evaluation, Kalman filtering, positioning in inhomogeneous media, and Global Positioning (GPS) in harsh environments Offers MATLAB examples to demonstrate fundamental algorithms for positioning and provides online access to all MATLAB code Allows practicing engineers and graduate students to keep pace with contemporary research and new technologies Contains numerous application-based examples including the application of localization to drone navigation, capsule endoscopy localization, and satellite navigation and localization Reviews unique applications of position location systems, including GNSS and RFID-based localization systems The Handbook of Position Location: Theory, Practice, and Advances is valuable resource for practicing engineers and researchers seeking to keep pace with current developments in the field, graduate students in need of clear and accurate course material, and university instructors teaching the fundamentals of wireless localization.




Fundamentals of Global Positioning System Receivers


Book Description

All the expert guidance you need to understand, build, and operate GPS receivers The Second Edition of this acclaimed publication enables readers to understand and apply the complex operation principles of global positioning system (GPS) receivers. Although GPS receivers are widely used in everyday life to aid in positioning and navigation, this is the only text that is devoted to complete coverage of their operation principles. The author, one of the foremost authorities in the GPS field, presents the material from a software receiver viewpoint, an approach that helps readers better understand operation and that reflects the forecasted integration of GPS receivers into such everyday devices as cellular telephones. Concentrating on civilian C/A code, the book provides the tools and information needed to understand and exploit all aspects of receiver technology as well as relevant navigation schemes: Overview of GPS basics and the constellation of satellites that comprise the GPS system Detailed examination of GPS signal structure, acquisition, and tracking Step-by-step presentation of the mathematical formulas for calculating a user's position Demonstration of the use of computer programs to run key equations Instructions for developing hardware to collect digitized data for a software GPS receiver Complete chapter demonstrating a GPS receiver following a signal flow to determine a user's position The Second Edition of this highly acclaimed text has been greatly expanded, including three new chapters: Acquisition of weak signals Tracking of weak signals GPS receiver related subjects Following the author's expert guidance and easy-to-follow style, engineers and scientists learn all that is needed to understand, build, and operate GPS receivers. The book's logical flow from basic concepts to applications makes it an excellent textbook for upper-level undergraduate and graduate students in electrical engineering, wireless communications, and computer science.




Global Positioning Systems, Inertial Navigation, and Integration


Book Description

An updated guide to GNSS and INS, and solutions to real-world GPS/INS problems with Kalman filtering Written by recognized authorities in the field, this second edition of a landmark work provides engineers, computer scientists, and others with a working familiarity with the theory and contemporary applications of Global Navigation Satellite Systems (GNSS), Inertial Navigational Systems (INS), and Kalman filters. Throughout, the focus is on solving real-world problems, with an emphasis on the effective use of state-of-the-art integration techniques for those systems, especially the application of Kalman filtering. To that end, the authors explore the various subtleties, common failures, and inherent limitations of the theory as it applies to real-world situations, and provide numerous detailed application examples and practice problems, including GNSS-aided INS, modeling of gyros and accelerometers, and SBAS and GBAS. Drawing upon their many years of experience with GNSS, INS, and the Kalman filter, the authors present numerous design and implementation techniques not found in other professional references. This Second Edition has been updated to include: GNSS signal integrity with SBAS Mitigation of multipath, including results Ionospheric delay estimation with Kalman filters New MATLAB programs for satellite position determination using almanac and ephemeris data and ionospheric delay calculations from single and dual frequency data New algorithms for GEO with L1 /L5 frequencies and clock steering Implementation of mechanization equations in numerically stable algorithms To enhance comprehension of the subjects covered, the authors have included software in MATLAB, demonstrating the working of the GNSS, INS, and filter algorithms. In addition to showing the Kalman filter in action, the software also demonstrates various practical aspects of finite word length arithmetic and the need for alternative algorithms to preserve result accuracy.




The Global Positioning System


Book Description

A comprehensive assessment of the challenges and opportunities created by worldwide access to this revolutionary technology.




The Global Positioning System & Inertial Navigation


Book Description

With GPS and INS hardware becoming ever smaller and less expensive, innovative opportunities for commercial navigation systems are everywhereÑand continue to arise. Integrated GPS/INS systems have some real advantages, in terms of output rate, reliability, and accuracy. The Global Positioning System and Inertial Navigation is the first-ever reference to provide engineers and scientists with a detailed, top-to-bottom look at GPS and INS in a single volume. This in-depth text provides navigation system designers comprehensive and accurate coverage of such topics as coordinate frames and transformations, Kalman filtering techniques, navigation system performance analysis, GPS receiver ephemeris and pseudo-range processing, differential GPS, carrier phase processing, and attitude determination. Extensively cross-referenced to the literature on advanced navigation system design, this superb engineering reference is ideal for navigation systems designers, analysts, and project managers.