Global Solution Curves for Semilinear Elliptic Equations


Book Description

This book provides an introduction to the bifurcation theory approach to global solution curves and studies the exact multiplicity of solutions for semilinear Dirichlet problems, aiming to obtain a complete understanding of the solution set. This understanding opens the way to efficient computation of all solutions. Detailed results are obtained in case of circular domains, and some results for general domains are also presented. The author is one of the original contributors to the field of exact multiplicity results.







Mathematical Reviews


Book Description




Portugaliae Mathematica


Book Description







Elliptic & Parabolic Equations


Book Description

This book provides an introduction to elliptic and parabolic equations. While there are numerous monographs focusing separately on each kind of equations, there are very few books treating these two kinds of equations in combination. This book presents the related basic theories and methods to enable readers to appreciate the commonalities between these two kinds of equations as well as contrast the similarities and differences between them.




Superlinear Parabolic Problems


Book Description

This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The book is self-contained and up-to-date, taking special care on the didactical preparation of the material. It is devoted to problems that are intensively studied but have not been treated thus far in depth in the book literature.




Lectures on Differential Equations


Book Description

Lectures on Differential Equations provides a clear and concise presentation of differential equations for undergraduates and beginning graduate students. There is more than enough material here for a year-long course. In fact, the text developed from the author's notes for three courses: the undergraduate introduction to ordinary differential equations, the undergraduate course in Fourier analysis and partial differential equations, and a first graduate course in differential equations. The first four chapters cover the classical syllabus for the undergraduate ODE course leavened by a modern awareness of computing and qualitative methods. The next two chapters contain a well-developed exposition of linear and nonlinear systems with a similarly fresh approach. The final two chapters cover boundary value problems, Fourier analysis, and the elementary theory of PDEs. The author makes a concerted effort to use plain language and to always start from a simple example or application. The presentation should appeal to, and be readable by, students, especially students in engineering and science. Without being excessively theoretical, the book does address a number of unusual topics: Massera's theorem, Lyapunov's inequality, the isoperimetric inequality, numerical solutions of nonlinear boundary value problems, and more. There are also some new approaches to standard topics including a rethought presentation of series solutions and a nonstandard, but more intuitive, proof of the existence and uniqueness theorem. The collection of problems is especially rich and contains many very challenging exercises. Philip Korman is professor of mathematics at the University of Cincinnati. He is the author of over one hundred research articles in differential equations and the monograph Global Solution Curves for Semilinear Elliptic Equations. Korman has served on the editorial boards of Communications on Applied Nonlinear Analysis, Electronic Journal of Differential Equations, SIAM Review, an\ d Differential Equations and Applications.




Non-linear Elliptic Equations in Conformal Geometry


Book Description

Non-linear elliptic partial differential equations are an important tool in the study of Riemannian metrics in differential geometry, in particular for problems concerning the conformal change of metrics in Riemannian geometry. In recent years the role played by the second order semi-linear elliptic equations in the study of Gaussian curvature and scalar curvature has been extended to a family of fully non-linear elliptic equations associated with other symmetric functions of the Ricci tensor. A case of particular interest is the second symmetric function of the Ricci tensor in dimension four closely related to the Pfaffian. In these lectures, starting from the background material, the author reviews the problem of prescribing Gaussian curvature on compact surfaces. She then develops the analytic tools (e.g., higher order conformal invariant operators, Sobolev inequalities, blow-up analysis) in order to solve a fully nonlinear equation in prescribing the Chern-Gauss-Bonnet integrand on compact manifolds of dimension four. The material is suitable for graduate students and research mathematicians interested in geometry, topology, and differential equations.




数理科学講究錄


Book Description