Selected Papers of Kentaro Yano


Book Description

Selected Papers of Kentaro Yano




A3 & His Algebra


Book Description

A3 & HIS ALGEBRA is the true story of a struggling young boy from Chicago's west side who grew to become a force in American mathematics. For nearly 50 years, A. A. Albert thrived at the University of Chicago, one of the world's top centers for algebra. His "pure research" in algebra found its way into modern computers, rocket guidance systems, cryptology, and quantum mechanics, the basic theory behind atomic energy calculations. This first-hand account of the life of a world-renowned American mathematician is written by Albert's daughter. Her memoir, which favors a general audience, offers a personal and revealing look at the multidimensional life of an academic who had a lasting impact on his profession. SOME QUOTATIONS FROM PROFESSOR ALBERT: "There are really few bad students of mathematics. There are, instead, many bad teachers and bad curricula..." "The difficulty of learning mathematics is increased by the fact that in so many high schools this very difficult subject is considered to be teachable by those whose major subject is language, botany, or even physical education." "It is still true that in a majority of American universities the way to find the Department of Mathematics is to ask for the location of the oldest and most decrepit building on campus." "The production of a single scientist of first magnitude will have a greater impact on our civilization than the production of fifty mediocre Ph.D.'s." "Freedom is having the time to do research...Even in mathematics there are 'fashions'. This doesn't mean that the researcher is controlled by them. Many go their own way, ignoring the fashionable. That's part of the strength of a great university."




Foundations of Differential Geometry, Volume 2


Book Description

This two-volume introduction to differential geometry, part of Wiley's popular Classics Library, lays the foundation for understanding an area of study that has become vital to contemporary mathematics. It is completely self-contained and will serve as a reference as well as a teaching guide. Volume 1 presents a systematic introduction to the field from a brief survey of differentiable manifolds, Lie groups and fibre bundles to the extension of local transformations and Riemannian connections. The second volume continues with the study of variational problems on geodesics through differential geometric aspects of characteristic classes. Both volumes familiarize readers with basic computational techniques.




Collected Papers of Salomon Bochner


Book Description

Collected papers of Salomon Bochner, American mathematician, known for work in mathematical analysis, probability theory and differential geometry.




Collected Mathematical Papers: Associative algebras and Riemann matrices


Book Description

This book contains the collected works of A. Adrian Albert, a leading algebraist of the twentieth century. Albert made many important contributions to the theory of the Brauer group and central simple algeras, Riemann matrices, nonassociative algebras and other topics. Part 1 focuses on associative algebras and Riemann matrices part 2 on nonassociative algebras and miscellany. Because much of Albert's work remains of vital interest in contemporary research, this volume will interst mathematicians in a variety of areas.




Banach Algebras and the General Theory of *-Algebras: Volume 1, Algebras and Banach Algebras


Book Description

This is the first volume of a two volume set that provides a modern account of basic Banach algebra theory including all known results on general Banach *-algebras. This account emphasizes the role of *-algebraic structure and explores the algebraic results that underlie the theory of Banach algebras and *-algebras. The first volume, which contains previously unpublished results, is an independent, self-contained reference on Banach algebra theory. Each topic is treated in the maximum interesting generality within the framework of some class of complex algebras rather than topological algebras. Proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, particularly in noncommutative harmonic analysis, and an extensive bibliography. Volume II is forthcoming.







Jacques Hadamard


Book Description

This book presents a fascinating story of the long life and great accomplishments of Jacques Hadamard (1865-1963), who was once called 'the living legend of mathematics'. As one of the last universal mathematicians, Hadamard's contributions to mathematics are landmarks in various fields. His life is linked with world history of the 20th century in a dramatic way. This work provides an inspiring view of the development of various branches of mathematics during the 19th and 20th centuries.Part I of the book portrays Hadamard's family, childhood and student years, scientific triumphs, and his personal life and trials during the first two world wars. The story is told of his involvement in the Dreyfus affair and his subsequent fight for justice and human rights. Also recounted are Hadamard's worldwide travels, his famous seminar, his passion for botany, his home orchestra, where he played the violin with Einstein, and his interest in the psychology of mathematical creativity. Hadamard's life is described in a readable and inviting way.The authors humorously weave throughout the text his jokes and the myths about him. They also movingly recount the tragic side of his life. Stories about his relatives and friends, and old letters and documents create an authentic and colorful picture. The book contains over 300 photographs and illustrations. Part II of the book includes a lucid overview of Hadamard's enormous work, spanning over six decades. The authors do an excellent job of connecting his results to current concerns.While the book is accessible to beginners, it also provides rich information of interest to experts. Vladimir Mazya and Tatyana Shaposhnikova were the 2003 laureates of the Insitut de France's Prix Alfred Verdaguer. One or more prizes are awarded each year, based on suggestions from the Academie francaise, the Academie de sciences, and the Academie de beaux-arts, for the most remarkable work in the arts, literature, and the sciences. In 2003, the award for excellence was granted in recognition of Mazya and Shaposhnikova's book, ""Jacques Hadamard, A Universal Mathematician"", which is both an historical book about a great citizen and a scientific book about a great mathematician.