Gösta Mittag-Leffler


Book Description

Gösta Mittag-Leffler (1846–1927) played a significant role as both a scientist and entrepreneur. Regarded as the father of Swedish mathematics, his influence extended far beyond his chosen field because of his extensive network of international contacts in science, business, and the arts. He was instrumental in seeing to it that Marie Curie was awarded the Nobel Prize twice. One of Mittag-Leffler’s major accomplishments was the founding of the journal Acta Mathematica , published by Institut Mittag-Leffler and Sweden’s Royal Academy of Sciences. Arild Stubhaug’s research for this monumental biography relied on a wealth of primary and secondary resources, including more than 30000 letters that are part of the Mittag-Leffler archives. Written in a lucid and compelling manner, the biography contains many hitherto unknown facts about Mittag-Leffler’s personal life and professional endeavors. It will be of great interest to both mathematicians and general readers interested in science and culture.




G Sta Mittag-Leffler


Book Description




Mathematics and Mathematicians


Book Description

This book is about mathematics in Sweden between 1630 and 1950 - from S. Klingenstierna to M. Riesz, T. Carleman, and A. Beurling. It tells the story of how continental mathematics came to Sweden, how it was received, and how it inspired new results. The book contains a biography of Gosta Mittag-Leffler, the father of Swedish mathematics, who introduced the Weierstrassian theory of analytic functions and dominated a golden age from 1880 to 1910. Important results are analyzed and re-proved in modern notation, with explanations of their relations to mathematics at the time. The book treats Backlund transformations, Mittag-Leffler's theorem, the Phragmen-Lindelof theorem and Carleman's contributions to the spectral theorem, quantum mechanics, and the asymptotics of eigenvalues and eigenfunctions.




Gösta Mittag-Leffler and Vito Volterra. 40 Years of Correspondence


Book Description

The present book contains the voluminous correspondence exchanged between the Swedish mathematician Gösta Mittag-Leffler and his younger Italian colleague Vito Volterra spanning a period of almost forty years at the end of the 19th and beginning of the 20th centuries. The relationship between the two men is remarkable for both personal and scientific reasons. Mittag-Leffler met Volterra for the first time as a brilliant young student of Ulisse Dini in Pisa. He was soon captivated by the creativity and the skills of the young man, and eventually became his mentor. Being himself at the center of a major scientific network, Mittag-Leffler introduced Volterra to the major mathematicians of the time, especially the Germans (Weierstrass, Klein, Cantor...) and French (Darboux, Jordan...). In a few years, Volterra became the most prominent Italian mathematician and forged his own network of scientists all over Europe, and even in the United States which he was one of the first major European mathematicians to visit. Despite their difference in age, both men developed a deep and faithful friendship and their letters reflect the variety of themes of their exchanges. Of course, mathematics was the most prominent, and both men often used the letters as a first draft of their ideas and the addressee as a first judge of their soundness. Besides mathematics, they also touched upon many aspects of both private and public life: matrimony, children, holidays, politics and so on. This vast set of letters affords the reader a general overview of mathematical life at the turn of the 19th century and an appreciation of the European intellectual spirit which came to an end, or at least suffered a drastic turn, when the Great War broke out. Volterra and Mittag-Leffler's exchanges illustrate how general analysis, especially functional analysis, gained a dramatic momentum during those years, and how Volterra became one of the major leaders of the topic, opening the path for several fundamenta...




The Mittag-Leffler Theorem


Book Description

The Swedish mathematician Gösta Mittag-Leffler (1846-1927) is well-known for founding Acta Mathematica, the first international mathematical journal. A "post-doctoral" student in Paris and Berlin (1873-76), Mittag-Leffler built on Karl Weierstrass' work by proving the Mittag-Leffler theorem, roughly: a meromorphic function is specified by its poles, their multiplicities, and the coefficients in the principal part of its Laurent expansion. In this thesis, I explore the evolution of the Mittag-Leffler theorem, from its initial (1876) state to its final (1884) version. Aspects of the details of Mittag-Leffler's work at various stages are analyzed to demonstrate the evolution of Mittag-Leffler's technique. A key finding of the thesis is that Mittag-Leffler's research on infinite sets of singular points attracted him to Georg Cantor's set-theoretic work. The incorporation of Cantor's theory was controversial, but demonstrates Mittag-Leffler's important role in the promotion of abstract mathematics over the more concrete mathematics of the previous era.




Mittag-Leffler Functions, Related Topics and Applications


Book Description

As a result of researchers’ and scientists’ increasing interest in pure as well as applied mathematics in non-conventional models, particularly those using fractional calculus, Mittag-Leffler functions have recently caught the interest of the scientific community. Focusing on the theory of the Mittag-Leffler functions, the present volume offers a self-contained, comprehensive treatment, ranging from rather elementary matters to the latest research results. In addition to the theory the authors devote some sections of the work to the applications, treating various situations and processes in viscoelasticity, physics, hydrodynamics, diffusion and wave phenomena, as well as stochastics. In particular the Mittag-Leffler functions allow us to describe phenomena in processes that progress or decay too slowly to be represented by classical functions like the exponential function and its successors. The book is intended for a broad audience, comprising graduate students, university instructors and scientists in the field of pure and applied mathematics, as well as researchers in applied sciences like mathematical physics, theoretical chemistry, bio-mathematics, theory of control and several other related areas.










Poincare and the Three Body Problem


Book Description

Poincare's famous memoir on the three body problem arose from his entry in the competition celebrating the 60th birthday of King Oscar of Sweden and Norway. His essay won the prize and was set up in print as a paper in Acta Mathematica when it was found to contain a deep and critical error. In correcting this error Poincare discovered mathematical chaos, as is now clear from June Barrow-Green's pioneering study of a copy of the original memoir annotated by Poincare himself, recently discovered in the Institut Mittag-Leffler in Stockholm. Poincare and the Three Body Problem opens with a discussion of the development of the three body problem itself and Poincare's related earlier work. The book also contains intriguing insights into the contemporary European mathematical community revealed by the workings of the competition. After an account of the discovery of the error and a detailed comparative study of both the original memoir and its rewritten version, the book concludes with an account of the final memoir's reception, influence and impact, and an examination of Poincare's subsequent highly influential work in celestial mechanics.




Remembering Sofya Kovalevskaya


Book Description

Sofia Kovalevskaya was a brilliant and determined young Russian woman of the 19th century who wanted to become a mathematician and who succeeded, in often difficult circumstances, in becoming arguably the first woman to have a professional university career in the way we understand it today. This memoir, written by a mathematician who specialises in symplectic geometry and integrable systems, is a personal exploration of the life, the writings and the mathematical achievements of a remarkable woman. It emphasises the originality of Kovalevskaya’s work and assesses her legacy and reputation as a mathematician and scientist. Her ideas are explained in a way that is accessible to a general audience, with diagrams, marginal notes and commentary to help explain the mathematical concepts and provide context. This fascinating book, which also examines Kovalevskaya’s love of literature, will be of interest to historians looking for a treatment of the mathematics, and those doing feminist or gender studies.