Data Science in Education Using R


Book Description

Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.




Analysis of Categorical Data with R


Book Description

Analysis of Categorical Data with R, Second Edition presents a modern account of categorical data analysis using the R software environment. It covers recent techniques of model building and assessment for binary, multicategory, and count response variables and discusses fundamentals, such as odds ratio and probability estimation. The authors give detailed advice and guidelines on which procedures to use and why to use them. The second edition is a substantial update of the first based on the authors’ experiences of teaching from the book for nearly a decade. The book is organized as before, but with new content throughout, and there are two new substantive topics in the advanced topics chapter—group testing and splines. The computing has been completely updated, with the "emmeans" package now integrated into the book. The examples have also been updated, notably to include new examples based on COVID-19, and there are more than 90 new exercises in the book. The solutions manual and teaching videos have also been updated. Features: Requires no prior experience with R, and offers an introduction to the essential features and functions of R Includes numerous examples from medicine, psychology, sports, ecology, and many other areas Integrates extensive R code and output Graphically demonstrates many of the features and properties of various analysis methods Offers a substantial number of exercises in all chapters, enabling use as a course text or for self-study Supplemented by a website with data sets, code, and teaching videos Analysis of Categorical Data with R, Second Edition is primarily designed for a course on categorical data analysis taught at the advanced undergraduate or graduate level. Such a course could be taught in a statistics or biostatistics department, or within mathematics, psychology, social science, ecology, or another quantitative discipline. It could also be used by a self-learner and would make an ideal reference for a researcher from any discipline where categorical data arise.




Statistical Methods


Book Description

This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters




The Behavioral and Social Sciences


Book Description

This volume explores the scientific frontiers and leading edges of research across the fields of anthropology, economics, political science, psychology, sociology, history, business, education, geography, law, and psychiatry, as well as the newer, more specialized areas of artificial intelligence, child development, cognitive science, communications, demography, linguistics, and management and decision science. It includes recommendations concerning new resources, facilities, and programs that may be needed over the next several years to ensure rapid progress and provide a high level of returns to basic research.




Hierarchical Linear Models


Book Description

Hierarchical Linear Models launches a new Sage series, Advanced Quantitative Techniques in the Social Sciences. This introductory text explicates the theory and use of hierarchical linear models (HLM) through rich, illustrative examples and lucid explanations. The presentation remains reasonably nontechnical by focusing on three general research purposes - improved estimation of effects within an individual unit, estimating and testing hypotheses about cross-level effects, and partitioning of variance and covariance components among levels. This innovative volume describes use of both two and three level models in organizational research, studies of individual development and meta-analysis applications, and concludes with a formal derivation of the statistical methods used in the book.




Data Science and Machine Learning


Book Description

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code




Street Data


Book Description

Radically reimagine our ways of being, learning, and doing Education can be transformed if we eradicate our fixation on big data like standardized test scores as the supreme measure of equity and learning. Instead of the focus being on "fixing" and "filling" academic gaps, we must envision and rebuild the system from the student up—with classrooms, schools and systems built around students’ brilliance, cultural wealth, and intellectual potential. Street data reminds us that what is measurable is not the same as what is valuable and that data can be humanizing, liberatory and healing. By breaking down street data fundamentals: what it is, how to gather it, and how it can complement other forms of data to guide a school or district’s equity journey, Safir and Dugan offer an actionable framework for school transformation. Written for educators and policymakers, this book · Offers fresh ideas and innovative tools to apply immediately · Provides an asset-based model to help educators look for what’s right in our students and communities instead of seeking what’s wrong · Explores a different application of data, from its capacity to help us diagnose root causes of inequity, to its potential to transform learning, and its power to reshape adult culture Now is the time to take an antiracist stance, interrogate our assumptions about knowledge, measurement, and what really matters when it comes to educating young people.




International Encyclopedia of Education


Book Description

The field of education has experienced extraordinary technological, societal, and institutional change in recent years, making it one of the most fascinating yet complex fields of study in social science. Unequalled in its combination of authoritative scholarship and comprehensive coverage, International Encyclopedia of Education, Third Edition succeeds two highly successful previous editions (1985, 1994) in aiming to encapsulate research in this vibrant field for the twenty-first century reader. Under development for five years, this work encompasses over 1,000 articles across 24 individual areas of coverage, and is expected to become the dominant resource in the field. Education is a multidisciplinary and international field drawing on a wide range of social sciences and humanities disciplines, and this new edition comprehensively matches this diversity. The diverse background and multidisciplinary subject coverage of the Editorial Board ensure a balanced and objective academic framework, with 1,500 contributors representing over 100 countries, capturing a complete portrait of this evolving field. A totally new work, revamped with a wholly new editorial board, structure and brand-new list of meta-sections and articles Developed by an international panel of editors and authors drawn from senior academia Web-enhanced with supplementary multimedia audio and video files, hotlinked to relevant references and sources for further study Incorporates ca. 1,350 articles, with timely coverage of such topics as technology and learning, demography and social change, globalization, and adult learning, to name a few Offers two content delivery options - print and online - the latter of which provides anytime, anywhere access for multiple users and superior search functionality via ScienceDirect, as well as multimedia content, including audio and video files




Theory-Based Data Analysis for the Social Sciences


Book Description

This book presents the elaboration model for the multivariate analysis of observational quantitative data. This model entails the systematic introduction of "third variables" to the analysis of a focal relationship between one independent and one dependent variable to ascertain whether an inference of causality is justified. Two complementary strategies are used: an exclusionary strategy that rules out alternative explanations such as spuriousness and redundancy with competing theories, and an inclusive strategy that connects the focal relationship to a network of other relationships, including the hypothesized causal mechanisms linking the focal independent variable to the focal dependent variable. The primary emphasis is on the translation of theory into a logical analytic strategy and the interpretation of results. The elaboration model is applied with case studies drawn from newly published research that serve as prototypes for aligning theory and the data analytic plan used to test it; these studies are drawn from a wide range of substantive topics in the social sciences, such as emotion management in the workplace, subjective age identification during the transition to adulthood, and the relationship between religious and paranormal beliefs. The second application of the elaboration model is in the form of original data analysis presented in two Analysis Journals that are integrated throughout the text and implement the full elaboration model. Using real data, not contrived examples, the text provides a step-by-step guide through the process of integrating theory with data analysis in order to arrive at meaningful answers to research questions.




Computer Recognition Systems


Book Description

th This book contains papers accepted for presentation at the 4 International Conference on Computer Recognition Systems CORES'05, May 22-25, 2005, Rydzyna Castle (Poland), This conference is a continuation of a series of con ferences on similar topics (KOSYR) organized each second year, since 1999, by the Chair of Systems and Computer Networks, Wroclaw University of Tech nology. An increasing interest to those conferences paid not only by home but also by foreign participants inspired the organizers to transform them into conferences of international range. Our expectations that the community of specialists in computer recognizing systems will find CORES'05 a proper form of maintaining the tradition of the former conferences have been confirmed by a large number of submitted papers. Alas, organizational constraints caused a necessity to narrow the acceptance criteria so that only 100 papers have been finally included into the conference program. The area covered by accepted papers is still very large and it shows how vivacious is scientific activity in the domain of computer recognition methods and systems. It contains vari ous theoretical approaches to the recognition problem based on mathematical statistics, fuzzy sets, morphological methods, wavelets, syntactic methods, genetic algorithms, artificial neural networks, ontological models, etc. Most attention is still paid to visual objects recognition; however, acoustic, tex tual and other objects are also considered. Among application areas medical problems are in majority; recognition of faces, speech signals and textual in formation processing methods being also investigated.