Granular Computing in Decision Approximation


Book Description

This book presents a study in knowledge discovery in data with knowledge understood as a set of relations among objects and their properties. Relations in this case are implicative decision rules and the paradigm in which they are induced is that of computing with granules defined by rough inclusions, the latter introduced and studied within rough mereology, the fuzzified version of mereology. In this book basic classes of rough inclusions are defined and based on them methods for inducing granular structures from data are highlighted. The resulting granular structures are subjected to classifying algorithms, notably k—nearest neighbors and bayesian classifiers. Experimental results are given in detail both in tabular and visualized form for fourteen data sets from UCI data repository. A striking feature of granular classifiers obtained by this approach is that preserving the accuracy of them on original data, they reduce substantially the size of the granulated data set as well as the set of granular decision rules. This feature makes the presented approach attractive in cases where a small number of rules providing a high classification accuracy is desirable. As basic algorithms used throughout the text are explained and illustrated with hand examples, the book may also serve as a textbook.




Handbook of Granular Computing


Book Description

Although the notion is a relatively recent one, the notions and principles of Granular Computing (GrC) have appeared in a different guise in many related fields including granularity in Artificial Intelligence, interval computing, cluster analysis, quotient space theory and many others. Recent years have witnessed a renewed and expanding interest in the topic as it begins to play a key role in bioinformatics, e-commerce, machine learning, security, data mining and wireless mobile computing when it comes to the issues of effectiveness, robustness and uncertainty. The Handbook of Granular Computing offers a comprehensive reference source for the granular computing community, edited by and with contributions from leading experts in the field. Includes chapters covering the foundations of granular computing, interval analysis and fuzzy set theory; hybrid methods and models of granular computing; and applications and case studies. Divided into 5 sections: Preliminaries, Fundamentals, Methodology and Algorithms, Development of Hybrid Models and Applications and Case Studies. Presents the flow of ideas in a systematic, well-organized manner, starting with the concepts and motivation and proceeding to detailed design that materializes in specific algorithms, applications and case studies. Provides the reader with a self-contained reference that includes all pre-requisite knowledge, augmented with step-by-step explanations of more advanced concepts. The Handbook of Granular Computing represents a significant and valuable contribution to the literature and will appeal to a broad audience including researchers, students and practitioners in the fields of Computational Intelligence, pattern recognition, fuzzy sets and neural networks, system modelling, operations research and bioinformatics.







Rough Set Theory and Granular Computing


Book Description

After 20 years of pursuing rough set theory and its applications a look on its present state and further prospects is badly needed. The monograph Rough Set Theory and Granular Computing edited by Masahiro Inuiguchi, Shoji Hirano and Shusaku Tsumoto meets this demand. It presents the newest developments in this area and gives fair picture of the state of the art in this domain. Firstly, in the keynote papers by Zdzislaw Pawlak, Andrzej Skowron and Sankar K. Pal the relationship of rough sets with other important methods of data analysis -Bayes theorem, neuro computing and pattern recognitio- is thoroughly examined. Next, several interesting generalizations of the the ory and new directions of research are presented. Furthermore application of rough sets in data mining, in particular, rule induction methods based on rough set theory is presented and discussed. Further important issue dis cussed in the monograph is rough set based data analysis, including study of decisions making in conflict situations. Last but not least, some recent engi neering applications of rough set theory are given. They include a proposal of rough set processor architecture organization for fast implementation of ba sic rough set operations and discussion of results concerning advanced image processing for unmanned aerial vehicle. Thus the monograph beside presenting wide spectrum of ongoing research in this area also points out new emerging areas of study and applications, which makes it a valuable source of information to all interested in this do main.




Granular Computing and Big Data Advancements


Book Description

In an era defined by the deluge of data, navigating the complexities of decision-making under conditions of uncertainty has emerged as a formidable challenge for scholars and practitioners alike. The sheer volume and velocity of information inundating decision-makers often leads to paralysis or misguided choices, amplifying the risks inherent in uncertain environments. Granular Computing and Big Data Advancements provides insights and solutions in this challenging landscape. The impact of Granular Computing and Big Data Advancements reverberates across the research community, offering a cohesive resource that bridges the gap between theory and practice. With its interdisciplinary approach and emphasis on innovation, the book fosters collaboration and empowers scholars to tackle complex challenges head-on. Whether researchers seek novel methodologies, practitioners aim to enhance decision-making processes, or students embark on their academic journey, this publication serves as a cornerstone in the quest for effective decision-making amidst the uncertainties of the modern world.




Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing


Book Description

This book constitutes the refereed conference proceedings of the 15th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, RSFDGrC 2015, held in Tianjin, China in November 2015 as one of the co-located conference of the 2015 Joint Rough Set Symposium, JRS 2015. The 44 papers were carefully reviewed and selected from 97 submissions. The papers in this volume cover topics such as rough sets: the experts speak; generalized rough sets; rough sets and graphs; rough and fuzzy hybridization; granular computing; data mining and machine learning; three-way decisions; IJCRS 2015 data challenge.




Rough – Granular Computing in Knowledge Discovery and Data Mining


Book Description

This book covers methods based on a combination of granular computing, rough sets, and knowledge discovery in data mining (KDD). The discussion of KDD foundations based on the rough set approach and granular computing feature illustrative applications.




Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing


Book Description

The two volume set LNAI 3641 and LNAI 3642 constitutes the refereed proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2005, held in Regina, Canada in August/September 2005. The 119 revised full papers presented were carefully reviewed and selected from a total of 277 submissions. They comprise the two volumes together with 6 invited papers, 22 approved workshop papers, and 5 special section papers that all were carefully selected and thoroughly revised. The first volume includes 75 contributions related to rough set approximations, rough-algebraic foundations, feature selection and reduction, reasoning in information systems, rough-probabilistic approaches, rough-fuzzy hybridization, fuzzy methods in data analysis, evolutionary computing, machine learning, approximate and uncertain reasoning, probabilistic network models, spatial and temporal reasoning, non-standard logics, and granular computing. The second volume contains 77 contributions and deals with rough set software, data mining, hybrid and hierarchical methods, information retrieval, image recognition and processing, multimedia applications, medical applications, web content analysis, business and industrial applications, the approved workshop papers and the papers accepted for a special session on intelligent and sapient systems.




Approximate Reasoning by Parts


Book Description

The monograph offers a view on Rough Mereology, a tool for reasoning under uncertainty, which goes back to Mereology, formulated in terms of parts by Lesniewski, and borrows from Fuzzy Set Theory and Rough Set Theory ideas of the containment to a degree. The result is a theory based on the notion of a part to a degree. One can invoke here a formula Rough: Rough Mereology : Mereology = Fuzzy Set Theory : Set Theory. As with Mereology, Rough Mereology finds important applications in problems of Spatial Reasoning, illustrated in this monograph with examples from Behavioral Robotics. Due to its involvement with concepts, Rough Mereology offers new approaches to Granular Computing, Classifier and Decision Synthesis, Logics for Information Systems, and are--formulation of well--known ideas of Neural Networks and Many Agent Systems. All these approaches are discussed in this monograph. To make the exposition self--contained, underlying notions of Set Theory, Topology, and Deductive and Reductive Reasoning with emphasis on Rough and Fuzzy Set Theories along with a thorough exposition of Mereology both in Lesniewski and Whitehead--Leonard--Goodman--Clarke versions are discussed at length. It is hoped that the monograph offers researchers in various areas of Artificial Intelligence a new tool to deal with analysis of relations among concepts.




Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing


Book Description

This volume contains the papers selected for presentation at the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2003) held at Chongqing University of Posts and Telecommunications, Chongqing, P.R. China, May 26–29, 2003. There were 245 submissions for RSFDGrC 2003 excluding for 2 invited keynote papers and 11 invited plenary papers. Apart from the 13 invited papers, 114 papers were accepted for RSFDGrC 2003 and were included in this volume. The acceptance rate was only 46.5%. These papers were divided into 39 regular oral presentation papers (each allotted 8 pages), 47 short oral presentation papers (each allotted 4 pages) and 28 poster presentation papers (each allotted 4 pages) on the basis of reviewer evaluations. Each paper was reviewed by three referees. The conference is a continuation and expansion of the International Workshops on Rough Set Theory and Applications. In particular, this was the ninth meeting in the series and the first international conference. The aim of RSFDGrC2003 was to bring together researchers from diverse fields of expertise in order to facilitate mutual understanding and cooperation and to help in cooperative work aimed at new hybrid paradigms. It is our great pleasure to dedicate this volume to Prof. Zdzislaw Pawlak, who first introduced the basic ideas and definitions of rough sets theory over 20 years ago.