Grapevine Viruses: Molecular Biology, Diagnostics and Management


Book Description

The domestication of grapes dates back five thousand years ago and has spread to nearly all continents. In recent years, grape acreage has increased dramatically in new regions, including the United States of America, Chile, Asia (China and India), and Turkey. A major limiting factor to the sustained production of premium grapes and wines is infections by viruses. The advent of powerful molecular and metagenomics technologies, such as molecular cloning and next generation sequencing, allowed the discovery of new viruses from grapes. To date, grapevine is susceptible to 64 viruses that belong to highly diverse taxonomic groups. The most damaging diseases include: (1) infectious degeneration; (2) leafroll disease complex; and (3) rugose wood complex. Recently, two new disease syndromes have been recognized: Syrah decline and red blotch. Losses due to fanleaf degeneration are estimated at $1 billion annually in France alone. Other diseases including leafroll, rugose wood, Syrah de cline and red blotch can result in total crop loss several years post-infection. This situation is further exacerbated by mixed infections with multiple viruses and other biotic as well as adverse abiotic environmental conditions, such as drought and winter damage, causing even greater destruction. The book builds upon the last handbook (written over twenty years ago) on the part of diagnostics and extensively expands its scope by inclusion of molecular biology aspects of select viruses that are widespread and economically most important. This includes most current information on the biology, transmission, genome replication, transcription, subcellular localization, as well as virus-host interactions. It also touches on several novel areas of scientific inquiry. It also contains suggested directions for future research in the field of grapevine virology.







A Century of Plant Virology in India


Book Description

The book is a compilation of research work carried out on plant viruses during past 100 years in India. Plant viruses are important constraints in Indian agriculture. Tropical and sub-tropical environments and intensive crop cultivation practices ideally favours perpetuation of numerous plant viruses and their vectors in India, which often cause wide spread crop losses. Of all the plant pathogens, studies of plant viruses have received a special attention as they are difficult to manage. A large body of literature has been published on the plant virus research from India during past 100 years; however the information is so far not available in one place. This book provides comprehensive information on the biology, molecular biology, epidemics, crop losses, diagnosis and management of viruses and viroids occurring in India. Description of properties of the viruses are provided in the chapters comprising of different genera such as Allexivirus, Begomovirus, Babuvirus, Badnavirus, Carlavirus, Carmovirus, Cucumovirus, Closterovirus, Ilavirus, Mandrivirus, Potyvirus, Tospovirus, Tungrovirus and Sobemovirus. Virus-vector research related to aphid, thrips and whitefly is discussed. The work on the management aspects of plant viral diseases has been described with reference to the conventional, antiviral and transgenic approaches. Further, the quarantine mechanism developed in India for the exclusion of viruses and vectors has also been included. The book also provides useful information about the capacity building on the research and education on Plant Virology in India. Overall, the book covers a wide range of accounts of research findings and innovations in Plant Virology in India during past 100 years. The book will be a resourceful reference to the students, scientists, agricultural professionals and policy makers.




Grape Pest Management


Book Description




CRISPR and RNAi Systems


Book Description

Plants are vulnerable to pathogens including fungi, bacteria, and viruses, which cause critical problems and deficits. Crop protection by plant breeding delivers a promising solution with no obvious effect on human health or the local ecosystem. Crop improvement has been the most powerful approach for producing unique crop cultivars since domestication occurred, making possible the main innovations in feeding the globe and community development. Genome editing is one of the genetic devices that can be implemented, and disease resistance is frequently cited as the most encouraging application of CRISPR/Cas9 technology in agriculture. Nanobiotechnology has harnessed the power of genome editing to develop agricultural crops. Nanosized DNA or RNA nanotechnology approaches could contribute to raising the stability and performance of CRISPR guide RNAs. This book brings together the latest research in these areas. CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection presents a complete understanding of the RNAi and CRISPR/Cas9 techniques for controlling mycotoxins, fighting plant nematodes, and detecting plant pathogens. CRISPR/Cas genome editing enables efficient targeted modification in most crops, thus promising to accelerate crop improvement. CRISPR/Cas9 can be used for management of plant insects, and various plant pathogens. The book is an important reference source for both plant scientists and environmental scientists who want to understand how nano biotechnologically based approaches are being used to create more efficient plant protection and plant breeding systems. - Shows how nanotechnology is being used as the basis for new solutions for more efficient plant breeding and plant protection - Outlines the major techniques and applications of both CRISPR and RNAi technologies - Assesses the major challenges of escalating these technologies on a mass scale




Cassava-Mealybug Interactions


Book Description

Most basic information on plant-mealybug interactions during the last decade has come from research on the cassava Manihot esculenta Crantz (Euphorbiaceae) system with two mealybug species, namely Phenacoccus manihoti Matile-Ferrero and Phenacoccus herreni Cox and Williams (Sternorrhyncha: Pseudococcidae). Both these insects cause severe damage to cassava in Africa and South America, respectively. This book reviews these interactions (plant selection by the insects, nutritional requirements




The Application of Viruses to Biotechnology


Book Description

Viruses are microscopic agents that exist worldwide and are present in humans, animals, plants, and other living organisms in which they can cause devastating diseases. However, the advances of biotechnology and next-generation sequencing technologies have accelerated novel virus discovery, identification, sequencing, and manipulation, showing that they present unique characteristics that place them as valuable tools for a wide variety of biotechnological applications. Many applications of viruses have been used for agricultural purposes, namely concerning plant breeding and plant protection. Nevertheless, it is interesting to mention that plants have also many advantages to be used in vaccine production, such as the low cost and low risks they entail, showing once more the versatility of the use of viruses in biotechnology. Although it will obviously never be ignored that viruses are responsible for devastating diseases, it is clear that the more they are studied, the more possibilities they offer to us. They are now on the front line of the most revolutionizing techniques in several fields, providing advances that would not be possible without their existence. In this book there are presented studies that demonstrate the work developed using viruses in biotechnology. These studies were brought by experts that focus on the development and applications of many viruses in several fields, such as agriculture, the pharmaceutical industry, and medicine.







Comprehensive and Molecular Phytopathology


Book Description

This book offers a collection of information on successive steps of molecular 'dialogue' between plants and pathogens. It additionally presents data that reflects intrinsic logic of plant-parasite interactions. New findings discussed include: host and non-host resistance, specific and nonspecific elicitors, elicitors and suppressors, and plant and animal immunity. This book enables the reader to understand how to promote or prevent disease development, and allows them to systematize their own ideas of plant-pathogen interactions.* Offers a more extensive scope of the problem as compared to other books in the market* Presents data to allow consideration of host-parasite relationships in dynamics and reveals interrelations between pathogenicity and resistance factors* Discusses beneficial plant-microbe interactions and practical aspects of molecular investigations of plant-parasite relationships* Compares historical study of common and specific features of plant immunity with animal immunity




Graft-transmissible Diseases of Grapevines


Book Description