Graph Theory, 1736-1936


Book Description

First published in 1976, this book has been widely acclaimed as a major and enlivening contribution to the history of mathematics. The updated and corrected paperback contains extracts from the original writings of mathematicians who contributed to the foundations of graph theory. The author's commentary links each piece historically and frames the whole with explanations of the relevant mathematical terminology and notation.




Theory of Finite and Infinite Graphs


Book Description

To most graph theorists there are two outstanding landmarks in the history of their subject. One is Euler's solution of the Konigsberg Bridges Problem, dated 1736, and the other is the appearance of Denes Konig's textbook in 1936. "From Konigsberg to Konig's book" sings the poetess, "So runs the graphic tale . . . " 10]. There were earlier books that took note of graph theory. Veb len's Analysis Situs, published in 1931, is about general combinato rial topology. But its first two chapters, on "Linear graphs" and "Two-Dimensional Complexes," are almost exclusively concerned with the territory still explored by graph theorists. Rouse Ball's Mathematical Recreations and Essays told, usually without proofs, of the major graph-theoretical advances ofthe nineteenth century, of the Five Colour Theorem, of Petersen's Theorem on I-factors, and of Cayley's enumerations of trees. It was Rouse Ball's book that kindled my own graph-theoretical enthusiasm. The graph-theoretical papers of Hassler Whitney, published in 1931-1933, would have made an excellent textbook in English had they been collected and published as such. But the honour of presenting Graph Theory to the mathe matical world as a subject in its own right, with its own textbook, belongs to Denes Konig. Low was the prestige of Graph Theory in the Dirty Thirties. It is still remembered, with resentment now shading into amuse ment, how one mathematician scorned it as "The slums of Topol ogy.""




Graph theory


Book Description




Graph Theory with Applications to Engineering and Computer Science


Book Description

Because of its inherent simplicity, graph theory has a wide range of applications in engineering, and in physical sciences. It has of course uses in social sciences, in linguistics and in numerous other areas. In fact, a graph can be used to represent almost any physical situation involving discrete objects and the relationship among them. Now with the solutions to engineering and other problems becoming so complex leading to larger graphs, it is virtually difficult to analyze without the use of computers. This book is recommended in IIT Kharagpur, West Bengal for B.Tech Computer Science, NIT Arunachal Pradesh, NIT Nagaland, NIT Agartala, NIT Silchar, Gauhati University, Dibrugarh University, North Eastern Regional Institute of Management, Assam Engineering College, West Bengal Univerity of Technology (WBUT) for B.Tech, M.Tech Computer Science, University of Burdwan, West Bengal for B.Tech. Computer Science, Jadavpur University, West Bengal for M.Sc. Computer Science, Kalyani College of Engineering, West Bengal for B.Tech. Computer Science. Key Features: This book provides a rigorous yet informal treatment of graph theory with an emphasis on computational aspects of graph theory and graph-theoretic algorithms. Numerous applications to actual engineering problems are incorpo-rated with software design and optimization topics.




Quite Right


Book Description

Mathematics did not spring spontaneously into life, with rules set in stone for all time. Its story is closely linked with the problems of measurement and money that have often driven its progress. Quite Right explains how mathematical ideas have gradually emerged since prehistoric times, so that they pervade almost every aspect of life in the twenty-first century. Many histories of mathematics focus on the activities of those for whom mathematics itself was the motivation. Professor Biggs adopts a wider viewpoint. Making use of new discoveries of artefacts and documents, he explains the part that mathematics has played in the human story, and what that tells us about the nature of mathematics. The story reveals the power and beauty of mathematical concepts, which often belie their utilitarian origins. The twin paradigms of logical justification and algorithmic calculation recur throughout the book. No other book tells the story of mathematics, measurement, and money in this way. Includes secontions on: — The origins of calculation in ancient and medieval times — How mathematics provides answers that are right, and what that means — The impact of trade and the use of money on the development of mathematical algorithms — The use of mathematics for secure communications — How money and information are linked in our electronic world Quite Right is a fascinating story, suitable for anyone interested in the mathematical foundations of the world we live in. Norman Biggs is Professor (Emeritus) of Mathematics at the London School of Economics. He is the author of 12 books, including a perennial best-selling book Discrete Mathematics (Oxford University Press). He has a special interest in measurement and was Chair of the International Society of Weights and Scales Collectors from 2009-14. He served as a Vice President of the British Society for the History of Mathematics in 2014 and is an active member of the British Numismatic Society. 'This is a history of mathematics book with a difference. Instead of the usual chronological sequence of events, presented with mathematical hindsight (interpreting mathematical achievements from a modern point of view), this book tries to see things more from the context of the time - presenting the topics thematically rather than strictly chronologically, and including results and problems only when they fit into the themes ... the level of exposition is first-rate, with a far greater fluency than most mathematical writers can attain ... I am very happy to recommend it wholeheartedly.' Professor Robin Wilson, University of Oxford




Optimal Spacecraft Trajectories


Book Description

A textbook on the theory and applications of optimal spacecraft trajectories




Graph Theory


Book Description

For junior- to senior-level courses in Graph Theory taken by majors in Mathematics, Computer Science, or Engineering or for beginning-level graduate courses. Once considered an "unimportant" branch of topology, graph theory has come into its own through many important contributions to a wide range of fields -- and is now one of the fastest-growing areas in discrete mathematics and computer science. This new text introduces basic concepts, definitions, theorems, and examples from graph theory. The authors present a collection of interesting results from mathematics that involve key concepts and proof techniques; cover design and analysis of computer algorithms for solving problems in graph theory; and discuss applications of graph theory to the sciences. It is mathematically rigorous, but also practical, intuitive, and algorithmic.




The Four-Color Theorem


Book Description

This book discusses a famous problem that helped to define the field now known as topology: What is the minimum number of colors required to print a map so that no two adjoining countries have the same color? This problem remained unsolved until the 1950s, when it was finally cracked using a computer. This book discusses the history and mathematics of the problem, as well as the philosophical debate which ensued, regarding the validity of computer generated proofs.




The Four-Color Problem


Book Description

The Four-Color Problem




A Beginner's Guide to Graph Theory


Book Description

Concisely written, gentle introduction to graph theory suitable as a textbook or for self-study Graph-theoretic applications from diverse fields (computer science, engineering, chemistry, management science) 2nd ed. includes new chapters on labeling and communications networks and small worlds, as well as expanded beginner's material Many additional changes, improvements, and corrections resulting from classroom use