Bond Graph Modelling of Engineering Systems


Book Description

The author presents current work in bond graph methodology by providing a compilation of contributions from experts across the world that covers theoretical topics, applications in various areas as well as software for bond graph modeling. It addresses readers in academia and in industry concerned with the analysis of multidisciplinary engineering systems or control system design who are interested to see how latest developments in bond graph methodology with regard to theory and applications can serve their needs in their engineering fields. This presentation of advanced work in bond graph modeling presents the leading edge of research in this field. It is hoped that it stimulates new ideas with regard to further progress in theory and in applications.







Bond Graphs for Modelling, Control and Fault Diagnosis of Engineering Systems


Book Description

This book presents theory and latest application work in Bond Graph methodology with a focus on: • Hybrid dynamical system models, • Model-based fault diagnosis, model-based fault tolerant control, fault prognosis • and also addresses • Open thermodynamic systems with compressible fluid flow, • Distributed parameter models of mechanical subsystems. In addition, the book covers various applications of current interest ranging from motorised wheelchairs, in-vivo surgery robots, walking machines to wind-turbines.The up-to-date presentation has been made possible by experts who are active members of the worldwide bond graph modelling community. This book is the completely revised 2nd edition of the 2011 Springer compilation text titled Bond Graph Modelling of Engineering Systems – Theory, Applications and Software Support. It extends the presentation of theory and applications of graph methodology by new developments and latest research results. Like the first edition, this book addresses readers in academia as well as practitioners in industry and invites experts in related fields to consider the potential and the state-of-the-art of bond graph modelling.




Qualitative Simulation Modeling and Analysis


Book Description

Recently there has been considerable interest in qualitative methods in simulation and mathematical model- ing. Qualitative Simulation Modeling and Analysis is the first book to thoroughly review fundamental concepts in the field of qualitative simulation. The book will appeal to readers in a variety of disciplines including researchers in simulation methodology, artificial intelligence and engineering. This book boldly attempts to bring together, for the first time, the qualitative techniques previously found only in hard-to-find journals dedicated to single disciplines. The book is written for scientists and engineers interested in improving their knowledge of simulation modeling. The "qualitative" nature of the book stresses concepts of invariance, uncertainty and graph-theoretic bases for modeling and analysis.







Proceedings of the Sixteenth International Conference on Management Science and Engineering Management – Volume 1


Book Description

This book covers many hot topics, including theoretical and practical research in many areas such as dynamic analysis, machine learning, supply chain management, operations management, environmental management, uncertainty, and health and hygiene. It showcases advanced management concepts and innovative ideas. The 16th International Conference on Management Science and Engineering Management (2022 ICMSEM) will be held in Ankara, Turkey, during August 3-6, 2022. ICMSEM has always been committed to promoting innovation management science (M-S) and engineering management (EM) academic research and development. The book provides researchers and practitioners in the field of Management Science and Engineering Management (MSEM) with the latest, cutting-edge thinking and research in the field. It will appeal to readers interested in these fields, especially those looking for new ideas and research directions.




Petri Nets for Systems Engineering


Book Description

Using formal methods for the specification and verification of hardware and software systems is becoming increasingly important as systems increase in size and complexity. The aim of the book is to illustrate progress in formal methods based on Petri net formalisms. It presents both practical and theoretical foundations for the use of Petri nets in complex system engineering tasks. In doing so it bridges the gap between Petri nets and the systems modeling and implementation process. It contains a collection of examples arising from different fields, such as flexible manufacturing, telecommunication and workflow management systems.




Complexity Metrics in Engineering Design


Book Description

This book presents the results of several years’ research work on how to characterize complexity in engineering design with a specific regard to dependency modeling. The 52 complexity metrics that are presented show different facets of how complexity takes shape in design processes. The metrics are supported by a modeling method and a measurement framework to employ the metrics in a goal-oriented manner. The detailed description of all involved metrics and models makes it possible to apply the analysis approach to common process modeling methodologies. Three case studies from automotive process management illustrate the application to facilitate the transfer to other cases in an industrial context. The comprehensive appendix supplies additional details and checklists for structural analysis to generate a complete overview of current means of structural analysis.




Systemic Design Methodologies for Electrical Energy Systems


Book Description

This book proposes systemic design methodologies applied to electrical energy systems, in particular analysis and system management, modeling and sizing tools. It includes 8 chapters: after an introduction to the systemic approach (history, basics & fundamental issues, index terms) for designing energy systems, this book presents two different graphical formalisms especially dedicated to multidisciplinary devices modeling, synthesis and analysis: Bond Graph and COG/EMR. Other systemic analysis approaches for quality and stability of systems, as well as for safety and robustness analysis tools are also proposed. One chapter is dedicated to energy management and another is focused on Monte Carlo algorithms for electrical systems and networks sizing. The aim of this book is to summarize design methodologies based in particular on a systemic viewpoint, by considering the system as a whole. These methods and tools are proposed by the most important French research laboratories, which have many scientific partnerships with other European and international research institutions. Scientists and engineers in the field of electrical engineering, especially teachers/researchers because of the focus on methodological issues, will find this book extremely useful, as will PhD and Masters students in this field.




Handbook of Research on Advanced Applications of Graph Theory in Modern Society


Book Description

In the world of mathematics and computer science, technological advancements are constantly being researched and applied to ongoing issues. Setbacks in social networking, engineering, and automation are themes that affect everyday life, and researchers have been looking for new techniques in which to solve these challenges. Graph theory is a widely studied topic that is now being applied to real-life problems. The Handbook of Research on Advanced Applications of Graph Theory in Modern Society is an essential reference source that discusses recent developments on graph theory, as well as its representation in social networks, artificial neural networks, and many complex networks. The book aims to study results that are useful in the fields of robotics and machine learning and will examine different engineering issues that are closely related to fuzzy graph theory. Featuring research on topics such as artificial neural systems and robotics, this book is ideally designed for mathematicians, research scholars, practitioners, professionals, engineers, and students seeking an innovative overview of graphic theory.