Graphene-Based Electrochemical Sensors for Toxic Chemicals


Book Description

Graphene-based nanocomposites are very useful in detecting toxic chemicals such as heavy metals, inorganic anions, phenolic compounds, pesticides, and chemical warfare agents. The book presents recent progress on relevant topics: Toxicity of chemicals, importance of electrochemical sensors, different types of graphene-based nanomaterials, Neurotoxins and electroanalytical detection of toxic chemicals. Keywords: Graphene-based Nanocomposites, Electrochemical Sensors, Toxic Chemicals, Sensors for Toxic Molecules, Graphene-Metal Oxides, Graphene-Metal Chalcogenides, Graphene-Polymer Nanocomposites, Graphene-Carbon Nanotubes, Graphene-Carbon Nitrides, Graphene-MOF Composites, Heavy Metals, Phenolic Compounds, Pesticides, Chemical Warfare Agents.




Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals


Book Description

Metal oxide nanomaterials exhibit interesting electrical and photochemical properties because of their size, stability, and high surface area that render them as great choices in fabricating alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of metal oxides with other materials lead to the improvement in electrical conductivity, stability, and electron transfer kinetics during the electrocatalytic reactions. These key factors result in greater sensitivity of the sensor materials towards the analyte molecules. This book reviews the electrochemical determination of a variety of toxic chemical contaminants using metal oxide-based nanocomposite materials. Ultrasensitive and selective detection of toxic chemical contaminants is important and demanding, especially for monitoring and controlling environmental pollution. In recent years, metal oxide-based nanocomposite materials have shown high potential in the electrochemical detection of heavy metals, inorganic anions, phenolic compounds, pesticides, and chemical warfare reagents. Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals comprehensively reviews this topic. In addition to the instrumental simplicity, the electrochemical methods show the improved sensor performance through the synergetic effect of metal oxide and other electroactive nanomaterial present in the nanocomposite. Thus, detailed information on the electrochemical sensing of toxic chemical contaminants using metal oxide-based nanomaterials are discussed. The recent progress in developing electrochemical sensors using metal oxide-based nanocomposite materials and perspectives on future opportunities in sensor research and development are addressed in the book. - Introduces the fundamentals of electrochemical sensors and fabrication of metal oxide sensors of toxic chemicals - Reviews binary, doped, metal oxide-metal, metal oxide-carbon, metal oxide-polymer, metal-boron nitride, metal oxide-clay, and metal oxide- MOF electrodes - Systematically addresses the fabrication, synthesis, performance, mechanisms, detection limits, sensitivity, advantages and limitations and future perspectives of a wide range of metal oxide-based electrochemical sensors




Graphene-Based Electrochemical Sensors for Toxic Chemicals


Book Description

Graphene-based nanocomposites are very useful in detecting toxic chemicals such as heavy metals, inorganic anions, phenolic compounds, pesticides, and chemical warfare agents. The book presents recent progress on relevant topics: Toxicity of chemicals, importance of electrochemical sensors, different types of graphene-based nanomaterials, Neurotoxins and electroanalytical detection of toxic chemicals. Keywords: Graphene-based Nanocomposites, Electrochemical Sensors, Toxic Chemicals, Sensors for Toxic Molecules, Graphene-Metal Oxides, Graphene-Metal Chalcogenides, Graphene-Polymer Nanocomposites, Graphene-Carbon Nanotubes, Graphene-Carbon Nitrides, Graphene-MOF Composites, Heavy Metals, Phenolic Compounds, Pesticides, Chemical Warfare Agents.




Graphene-Based Electrochemical Sensors for Biomolecules


Book Description

Graphene-Based Electrochemical Sensors for Biomolecules presents the latest on these nanomaterials that have gained a lot of attention based on their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of graphene with other nanomaterials induces a synergetic effect, leading to the improvement in electrical conductivity, stability and an enhancement of the electrocatalytic activity of the new nanocomposite material. This book discusses the electrochemical determination of a variety of biomolecules using graphene-based nanocomposite materials. Finally, recent progress in the development of electrochemical sensors using graphene-based nanocomposite materials and perspectives on future opportunities in sensor research and development are discussed in detail. - Covers the importance of detecting biomolecules and the application of graphene and its nanocomposite materials in the detection of a wide variety of bioanalytes - Presents easily understood fundamentals of electrochemical sensing systems and the role of graphene-based nanocomposite materials in research and development




Disposable Electrochemical Sensors for Healthcare Monitoring


Book Description

Disposable electrodes have been widely used as a sensing platform in electrical and electrochemical sensors owing to the possibility of quantitative detection using clinical biomarkers with high precision, sensitivity and reproducibility, which are necessary for accurate diagnosis of the health condition of an individual. This book focusses on the emerging disposable electrochemical sensors in the health sector and the advancement of analytical devices to monitor diabetic, cancer and cardiovascular patients using different nanomaterials. It discusses the upcoming strategies, advantages and the limitations of the existing devices using disposable electrodes. Uniquely, it covers in-depth knowledge of mechanistic features of various designs of screen-printing electrodes and the material aspects required of sensors developed for the healthcare field. It also looks at the portable devices using a variety of materials and the future directions for research in this area. Appealing to the health care industry, this book is aimed at academic and research institutes at both the graduate and postgraduate level. The contributors are leading experts in the field and they are providing guidance for the next decade of research in the field of disposable electrochemical biosensors.




Electrochemical Sensors Technology


Book Description

This book Electrochemical Sensors Technology mostly reviews the modem methods and significant electrochemical and electroanalytical applications of chemical sensors and biosensors. Chapters of this book are invited and contributed from the experts throughout the world from prominent researchers and scientists in the field of sensors and in the field of electro- and biochemistry. Each chapter provides technical and methodological details beyond the level found in typical journal articles or reviews and explores the application of chemical sensors, environmental sensors, and biosensors to a significant problem in biomedical and environmental science, also providing a prospectus for the future. This book compiles with the expert knowledge of many specialists in the construction and use of chemical sensors and biosensors including chemical sensors, biological sensors, DNA sensors, immunosensors, gaseous sensors, ionic sensors, bioassay sensors, lab-on-chips, devices, portable sensors, microchips, nanosensors, implantable microsensors, and so on in the field of fundamental and applied electrochemistry. Highlights and importance are laid on real or practical problems, ranging from chemical application to biomedical monitoring, from in vitro to in vivo, and from single cell to animal to human measurement. This offers a unique opportunity of exchanging and combining the scientist or researcher in electrochemical sensors in largely chemistry, biological engineering, electronic engineering, and biomedical and physiological fields.




Electrochemical Biosensors


Book Description

Since four decades, rapid detection and monitoring in clinical and food diagnostics and in environmental and biodefense have paved the way for the elaboration of electrochemical biosensors. Thanks to their adaptability, ease of use in relatively complex samples, and their portability, electrochemical biosensors now are one of the mainstays of analy




Functionalized Nanomaterial-Based Electrochemical Sensors


Book Description

Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications provides a comprehensive overview of materials, functionalized interfaces, fabrication strategies and application areas. Special attention is given to the remaining challenges and opportunities for commercial realization of functionalized nanomaterial-based electrochemical sensors. An assortment of nanomaterials has been investigated for their incorporation into electrochemical sensors. For example, carbon- based nanomaterials (carbon nanotube, graphene and carbon fiber), noble metals (Au, Ag and Pt), polymers (nafion, polypyrrole) and non-noble metal oxides (Fe2O3, NiO, and Co3O4). The most relevant materials are discussed in the book with an emphasis on their evaluation of their realization in commercial applications. Application areas touched on include the environment, food and medicine industries. Health, safety and regulation considerations are touched on, along with economic and commercialization trends. - Introduces the principles of nanomaterials for electrochemical sensing applications - Reviews the most relevant fabrication strategies for functionalized nanomaterial-based electrochemical sensing platforms - Discusses considerations for the commercial realization of functionalized nanomaterial-based electrochemical sensors in the environment, food and point-of-care applications




Principles of Chemical Sensors


Book Description

Do not learn the tricks of the trade, learn the trade I started teachinggraduate coursesin chemical sensors in early 1980s, ?rst as a o- quarter (30 h) class then as a semester course and also as several intensive, 4–5-day courses. Later I organized my lecture notes into the ?rst edition of this book, which was published by Plenum in 1989 under the title Principles of Chemical Sensors. I started working on the second edition in 2006. The new edition of Principles of Chemical Sensors is a teaching book, not a textbook. Let me explain the difference. Textbooks usually cover some more or less narrow subject in maximum depth. Such an approach is not possible here. The subject of chemical sensors is much too broad, spanning many aspects of physical and analytical chemistry, biochemistry, materials science, solid-state physics, optics, device fabrication, electrical engine- ing, statistical analysis, and so on. The challengefor me has been to present uniform logical coverage of such a large area. In spite of its relatively shallow depth, it is intended as a graduate course. At its present state the amount of material is more thancan be coveredin a one-semestercourse (45h). Two one-quartercourseswould be more appropriate. Because of the breadth of the material, the sensor course has a somewhat unexpected but, it is hoped, bene?cial effect.




Biosensors


Book Description

Nowadays, the implementation of novel technological platforms in biosensor-based developments is primarily directed to the miniaturization of analytical systems and lowering the limits of detection. Rapid scientific and technological progress enables the application of biosensors for the online detection of minute concentrations of different chemical compounds in a wide selection of matrixes and monitoring extremely low levels of biomarkers even in living organisms and individual cells. This book, including 16 chapters, characterizes the present state of the art and prospective options for micro and nanoscale activities in biosensors construction and applications.