Gravitational Curvature


Book Description

This classic text and reference monograph applies modern differential geometry to general relativity. A brief mathematical introduction to gravitational curvature, it emphasizes the subject's geometric essence and stresses the global aspects of cosmology. Suitable for independent study as well as for courses in differential geometry, relativity, and cosmology. 1979 edition.




The Curvature of Spacetime


Book Description

The internationally renowned physicist Harald Fritzsch deftly explains the meaning and far-flung implications of the general theory of relativity and other mysteries of modern physics by presenting an imaginary conversation among Newton, Einstein, and a fictitious contemporary particle physicist named Adrian Haller. In this entertaining and involving account of relativity, Newton serves as the skeptic and asks the questions a modern reader might ask. Einstein himself does the explaining, while Haller explains the new developments that have occurred since the general theory was proposed.




Spacetime and Geometry


Book Description

An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.




Extensions of f(R) Gravity


Book Description

Presents a detailed analysis of modified theories of gravity, discussing their development, cosmological and astrophysical implications and outstanding challenges.




The Geometry of Spacetime


Book Description

Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.




Euclidean Quantum Gravity


Book Description

The Euclidean approach to Quantum Gravity was initiated almost 15 years ago in an attempt to understand the difficulties raised by the spacetime singularities of classical general relativity which arise in the gravitational collapse of stars to form black holes and the entire universe in the Big Bang. An important motivation was to develop an approach capable of dealing with the nonlinear, non-perturbative aspects of quantum gravity due to topologically non-trivial spacetimes. There are important links with a Riemannian geometry. Since its inception the theory has been applied to a number of important physical problems including the thermodynamic properties of black holes, quantum cosmology and the problem of the cosmological constant. It is currently at the centre of a great deal of interest.This is a collection of survey lectures and reprints of some important lectures on the Euclidean approach to quantum gravity in which one expresses the Feynman path integral as a sum over Riemannian metrics. As well as papers on the basic formalism there are sections on Black Holes, Quantum Cosmology, Wormholes and Gravitational Instantons.




Gravitation


Book Description

Spacetime physics -- Physics in flat spacetime -- The mathematics of curved spacetime -- Einstein's geometric theory of gravity -- Relativistic stars -- The universe -- Gravitational collapse and black holes -- Gravitational waves -- Experimental tests of general relativity -- Frontiers




Relativity in Curved Spacetime


Book Description

Relativity theory has become one of the icons of Twentieth Century science. It's reckoned to be a difficult subject, taught as a layered series of increasingly difficult mathematics and increasingly abstract concepts. We're told that relativity theory is supposed to be this complicated and counter-intuitive. But how much of this historical complexity is really necessary? Can we bypass the interpretations and paradoxes and pseudoparadoxes of Einstein's special theory and jump directly to a deeper and more intuitive description of reality? What if curvature is a fundamental part of physics, and a final theory of relativity shouldn't reduce to Einstein's "flat" 1905 theory //on principle//? "Relativity..." takes us on a whistlestop tour of Twentieth Century physics - from black holes, quantum mechanics, wormholes and the Big Bang to the workings of the human mind, and asks: what would physics look like without special relativity? 394 printed pages, 234156 mm, 200 figures and illustrations, includes bibliography and index www.relativitybook.com




Semiclassical and Stochastic Gravity


Book Description

An overview of semi-classical gravity theory and stochastic gravity as theories of quantum gravity in curved space-time.




Relativity, Gravitation and Cosmology


Book Description

An introduction to Einstein's general theory of relativity, this work is structured so that interesting applications, such as gravitational lensing, black holes and cosmology, can be presented without the readers having to first learn the difficult mathematics of tensor calculus.