Greedy Approximation


Book Description

This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two types are frequently employed in applications: adaptive methods are used in PDE solvers, while m-term approximation is used in image/signal/data processing, as well as in the design of neural networks. The fundamental question of nonlinear approximation is how to devise good constructive methods (algorithms) and recent results have established that greedy type algorithms may be the solution. The author has drawn on his own teaching experience to write a book ideally suited to graduate courses. The reader does not require a broad background to understand the material. Important open problems are included to give students and professionals alike ideas for further research.




Approximation Algorithms for Combinatorial Optimization


Book Description

This book constitutes the refereed proceedings of the Third International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2000, held in Saarbrcken, Germany in September 2000. The 22 revised full papers presented together with four invited contributions were carefully reviewed and selected from 68 submissions. The topics dealt with include design and analysis of approximation algorithms, inapproximibility results, on-line problems, randomization techniques, average-case analysis, approximation classes, scheduling problems, routing and flow problems, coloring and partitioning, cuts and connectivity, packing and covering, geometric problems, network design, and various applications.




Banach Spaces and their Applications in Analysis


Book Description

In recent years there has been a surge of profound new developments in various aspects of analysis whose connecting thread is the use of Banach space methods. Indeed, many problems seemingly far from the classical geometry of Banach spaces have been solved using Banach space techniques. This volume contains papers by participants of the conference "Banach Spaces and their Applications in Analysis", held in May 2006 at Miami University in Oxford, Ohio, in honor of Nigel Kalton's 60th birthday. In addition to research articles contributed by participants, the volume includes invited expository articles by principal speakers of the conference, who are leaders in their areas. These articles present overviews of new developments in each of the conference's main areas of emphasis, namely nonlinear theory, isomorphic theory of Banach spaces including connections with combinatorics and set theory, algebraic and homological methods in Banach spaces, approximation theory and algorithms in Banach spaces. This volume also contains an expository article about the deep and broad mathematical work of Nigel Kalton, written by his long time collaborator, Gilles Godefroy. Godefroy's article, and in fact the entire volume, illustrates the power and versatility of applications of Banach space methods and underlying connections between seemingly distant areas of analysis.




The Design of Approximation Algorithms


Book Description

Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.




Approximation and Online Algorithms


Book Description

This book constitutes the thoroughly refereed post-proceedings of the 4th International Workshop on Approximation and Online Algorithms, WAOA 2006, held in Zurich, Switzerland in September 2006 as part of the ALGO 2006 conference event. The 26 revised full papers presented were carefully reviewed and selected from 62 submissions.




Sparse Approximation with Bases


Book Description

This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and does not require a broad background in the field.




Multivariate Approximation


Book Description

Self-contained presentation of multivariate approximation from classical linear approximation to contemporary nonlinear approximation.




Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques


Book Description

This book constitutes the joint refereed proceedings of the 7th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2004 and the 8th International Workshop on Randomization and Computation, RANDOM 2004, held in Cambridge, MA, USA in August 2004. The 37 revised full papers presented were carefully reviewed and selected from 87 submissions. Among the issues addressed are design and analysis of approximation algorithms, inapproximability results, approximation classes, online problems, graph algorithms, cuts, geometric computations, network design and routing, packing and covering, scheduling, game theory, design and analysis of randomised algorithms, randomized complexity theory, pseudorandomness, derandomization, probabilistic proof systems, error-correcting codes, and other applications of approximation and randomness.




Complexity and Approximation


Book Description

This Festschrift is in honor of Ker-I Ko, Professor in the Stony Brook University, USA. Ker-I Ko was one of the founding fathers of computational complexity over real numbers and analysis. He and Harvey Friedman devised a theoretical model for real number computations by extending the computation of Turing machines. He contributed significantly to advancing the theory of structural complexity, especially on polynomial-time isomorphism, instance complexity, and relativization of polynomial-time hierarchy. Ker-I also made many contributions to approximation algorithm theory of combinatorial optimization problems. This volume contains 17 contributions in the area of complexity and approximation. Those articles are authored by researchers over the world, including North America, Europe and Asia. Most of them are co-authors, colleagues, friends, and students of Ker-I Ko.




Model Reduction and Approximation


Book Description

Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.