Green Concrete for a Better Sustainable Environment


Book Description

This book, Green Concrete for a Better Sustainable Environment, aims to cover recent advances in the development of green concrete solutions and discuss the best ways to leverage opportunities in this domain. Concrete can be described as green concrete if it has one of the following features; it uses waste material as at least one of its components, its production process does not lead to environmental destruction, or it has high performance and life cycle sustainability. At present, natural resources are running out. Cement and concrete made from industrial and construction waste can be regarded as valuable resources for civil infrastructure construction. Green concrete will not only contribute to a circular economy, but can also help to reduce the amount of embodied energy and CO2 emissions associated with cement manufacturing and aggregate quarrying. Using green concrete can also mitigate the environmental threats associated with industrial waste materials. This book covers the theoretical, experimental, applied and modelling research studies on the materials, products and structures related to sustainable cement-based composites.




Green Building with Concrete


Book Description

With superior fire resistance, strength, and a long service life, concrete is the most widely used construction material in the world. A sustainable material, concrete is also easily and affordably reused and rehabilitated. The first book to provide an overview of sustainability and concrete, Green Building with Concrete: Sustainable Design and Construction surveys the material’s history in the green building movement and presents state-of-the-art methodologies and best practices. From the manufacturing of cement to the rehabilitation of concrete, this comprehensive book explains how concrete can be used for sustainable design and construction. It offers insight into new technological and social developments guiding the introduction of green buildings and examines the attributes that concrete has to offer the green building movement. The text also highlights research on economic analysis—particularly life cycle costing—to provide a full picture of the economic benefits of concrete. Expert contributors from around the world offer diverse viewpoints on global sustainability. Topics covered include: Principles of sustainable design Benefits of concrete’s thermal mass Mitigation of urban heat island effects Surface runoff and the application of pervious concrete for sidewalks and parking areas Reduction of construction waste Leadership in energy and environmental design (LEED) standards Emphasizing environmental impact and occupational and consumer health and safety, this book explains how to make the most of concrete in sustainable design. Written for university and concrete industry continuing education courses, it also serves as a reference for building owners and industry professionals who recognize the value of green building.




Recent Advances on Green Concrete for Structural Purposes


Book Description

This book is mainly based on the results of the EU-funded UE-FP7 Project EnCoRe, which aimed to characterize the key physical and mechanical properties of a novel class of advanced cement-based materials incorporating recycled powders and aggregates and/or natural ingredients in order to allow partial or even total replacement of conventional constituents. More specifically, the project objectives were to predict the physical and mechanical performance of concrete with recycled aggregates; to understand the potential contribution of recycled fibers as a dispersed reinforcement in concrete matrices; and to demonstrate the feasibility and possible applications of natural fibers as a reinforcement in cementitious composites. All of these aspects are fully covered in the book. The opening chapters explain the material concept and design and discuss the experimental characterization of the physical, chemical, and mechanical properties of the recycled raw constituents, as well as of the cementitious composite incorporating them. The numerical models with potentialities for describing the behavior at material and structural level of constructions systems made by these composites are presented. Finally, engineering applications and guidelines for production and design are proposed.




Handbook of Sustainable Concrete and Industrial Waste Management


Book Description

The Handbook of Sustainable Concrete and Industrial Waste Management summarizes key research trends in recycling and reusing concrete and industrial waste to reduce their environmental impact. This volume also includes important contributions in collaboration with the CRI-TEST Innovation Lab, Naples – Acerra. Part one discusses eco-friendly innovative cement and concrete and reviews key substitute materials. Part two analyzes the use of industrial waste as aggregates and the mechanical properties of concrete containing waste materials. Part three discusses differences between innovative binders, focusing on alkali-activated and geopolymer concrete. Part four provides a thorough overview of the life cycle assessment (LCA) of concrete containing industrial wastes and the impacts related to the logistics of wastes, the production of the concrete, and the management of industrial wastes. By providing research examples, case studies, and practical strategies, this book is a state-of-the-art reference for researchers working in construction materials, civil or structural engineering, and engineers working in the industry. - Offers a systematic and comprehensive source of information on the latest developments in sustainable concrete; - Analyzes different types of sustainable concrete and innovative binders from chemical, physical, and mechanical points of view; - Includes real case studies showing application of the LCA methodology.




Self-Sensing Concrete in Smart Structures


Book Description

Concrete is the second most used building material in the world after water. The problem is that over time the material becomes weaker. As a response, researchers and designers are developing self-sensing concrete which not only increases longevity but also the strength of the material. Self-Sensing Concrete in Smart Structures provides researchers and designers with a guide to the composition, sensing mechanism, measurement, and sensing properties of self-healing concrete along with their structural applications - Provides a systematic discussion of the structure of intrinsic self-sensing concrete - Compositions of intrinsic self-sensing concrete and processing of intrinsic self-sensing concrete - Explains the sensing mechanism, measurement, and sensing properties of intrinsic self-sensing concrete




Smart Nanoconcretes and Cement-Based Materials


Book Description

Smart Nanoconcretes and Cement-Based Materials: Properties, Modelling and Applications explores the fundamental concepts and applications of smart nanoconcretes with self-healing, self-cleaning, photocatalytic, antibacterial, piezoelectrical, heating and conducting properties and how they are used in modern high-rise buildings, hydraulic engineering, highways, tunnels and bridges. This book is an important reference source for materials scientists and civil engineers who are looking to enhance the properties of smart nanomaterials to create stronger, more durable concrete. Explores the mechanisms through which active agents are released from nanocontainers inside concrete Shows how embedded smart nanosensors, including carbon cement-based smart sensors and micro/nano strain-sensors, are used to increase concrete performance Discusses the major challenges of integrating smart nanomaterials into concrete composites




Sustainability of Concrete


Book Description

Production of Portland cement is responsible for about seven percent of the world's greenhouse gas emissions. The pressure to make the production of concrete more sustainable, or "greener", is considerable and increasing. This requires a wholesale shift in processes, materials and methods in the concrete industry. Pure Portland cement will nee




Sustainable Concrete Solutions


Book Description

The challenges facing humanity in the 21st century include climate change, population growth, overconsumption of resources, overproduction of waste and increasing energy demands. For construction practitioners, responding to these challenges means creating a built environment that provides accommodation and infrastructure with better whole-life performance using lower volumes of primary materials, less non-renewable energy, wasting less and causing fewer disturbances to the natural environment. Concrete is ubiquitous in the built environment. It is therefore essential that it is used in the most sustainable way so practitioners must become aware of the range of sustainable concrete solutions available for construction. While sustainable development has been embedded into engineering curricula, it can be difficult for students and academics to be fully aware of the innovations in sustainable construction that are developed by the industry. Sustainable Concrete Solutions serves as an introduction to and an overview of the latest developments in sustainable concrete construction. It provides useful guidance, with further references, to students, researchers, academics and practitioners of all construction disciplines who are faced with the challenge of designing, specifying and constructing with concrete.




Proceedings of the Sustainable Concrete Materials and Structures in Construction 2020


Book Description

This book gathers a selection of peer-reviewed papers presented at the Sustainable Concrete Materials and Structures in Construction 2020, held at Universiti Tun Hussein Onn Malaysia, Malaysia, on 24th August 2020. The contributions, prepared by international scientists and engineers, cover the latest advances in and innovative applications with the theme Towards Sustainable Green Concrete The articles in this book cater to academics, graduate students, researchers, as well as industrial practitioners working in the areas of concrete materials and building construction.




Sustainable Concrete Pavements


Book Description

Developed as a more detailed follow-up to a 2009 briefing document, Building Sustainable Pavement with Concrete, this guide provides a clear, concise, and cohesive discussion of pavement sustainability concepts and of recommended practices for maximizing the sustainability of concrete pavements. The intended audience includes decision makers and practitioners in both owner-agencies and supply, manufacturing, consulting, and contractor businesses. Readers will find individual chapters with the most recent technical information and best practices related to concrete pavement design, materials, construction, use/operations, renewal, and recycling. In addition, they will find chapters addressing issues specific to pavement sustainability in the urban environment and to the evaluation of pavement sustainability. Development of this guide satisfies a critical need identified in the Sustainability Track (Track 12) of the Long-Term Plan for Concrete Pavement Research and Technology (CP Road Map). The CP Road Map is a national research plan jointly developed by the concrete pavement stakeholder community, including Federal Highway Administration, academic institutions, state departments of transportation, and concrete pavement-related industries. It outlines 12 tracks of priority research needs related to concrete pavements. CP Road Map publications and other operations support services are provided by the National Concrete Pavement Technology Center at Iowa State University. For details about the CP Road Map, see www.cproadmap.org/index.cfm.