Grobner Bases in Commutative Algebra


Book Description

This book provides a concise yet comprehensive and self-contained introduction to Grobner basis theory and its applications to various current research topics in commutative algebra. It especially aims to help young researchers become acquainted with fundamental tools and techniques related to Grobner bases which are used in commutative algebra and to arouse their interest in exploring further topics such as toric rings, Koszul and Rees algebras, determinantal ideal theory, binomial edge ideals, and their applications to statistics. The book can be used for graduate courses and self-study. More than 100 problems will help the readers to better understand the main theoretical results and will inspire them to further investigate the topics studied in this book.




Gröbner Bases


Book Description

The origins of the mathematics in this book date back more than two thou sand years, as can be seen from the fact that one of the most important algorithms presented here bears the name of the Greek mathematician Eu clid. The word "algorithm" as well as the key word "algebra" in the title of this book come from the name and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek istan and worked in Baghdad at the court of Harun al-Rashid's son. The word "algorithm" is actually a westernization of al-Khowarizmi's name, while "algebra" derives from "al-jabr," a term that appears in the title of his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods for the solution of equations. This close connection between algebra and al gorithms lasted roughly up to the beginning of this century; until then, the primary goal of algebra was the design of constructive methods for solving equations by means of symbolic transformations. During the second half of the nineteenth century, a new line of thought began to enter algebra from the realm of geometry, where it had been successful since Euclid's time, namely, the axiomatic method.




An Introduction to Grobner Bases


Book Description

A very carefully crafted introduction to the theory and some of the applications of Grobner bases ... contains a wealth of illustrative examples and a wide variety of useful exercises, the discussion is everywhere well-motivated, and further developments and important issues are well sign-posted ... has many solid virtues and is an ideal text for beginners in the subject ... certainly an excellent text. --Bulletin of the London Mathematical Society As the primary tool for doing explicit computations in polynomial rings in many variables, Grobner bases are an important component of all computer algebra systems. They are also important in computational commutative algebra and algebraic geometry. This book provides a leisurely and fairly comprehensive introduction to Grobner bases and their applications. Adams and Loustaunau cover the following topics: the theory and construction of Grobner bases for polynomials with coefficients in a field, applications of Grobner bases to computational problems involving rings of polynomials in many variables, a method for computing syzygy modules and Grobner bases in modules, and the theory of Grobner bases for polynomials with coefficients in rings. With over 120 worked-out examples and 200 exercises, this book is aimed at advanced undergraduate and graduate students. It would be suitable as a supplement to a course in commutative algebra or as a textbook for a course in computer algebra or computational commutative algebra. This book would also be appropriate for students of computer science and engineering who have some acquaintance with modern algebra.




Grobner Bases in Ring Theory


Book Description

1. Preliminaries. 1.1. Presenting algebras by relations. 1.2. S-graded algebras and modules. 1.3. [symbol]-filtered algebras and modules -- 2. The [symbol]-leading homogeneous algebra A[symbol]. 2.1. Recognizing A via G[symbol](A): part 1. 2.2. Recognizing A via G[symbol](A): part 2. 2.3. The [symbol-graded isomorphism A[symbol](A). 2.4. Recognizing A via A[symbol] -- 3. Grobner bases: conception and construction. 3.1. Monomial ordering and admissible system. 3.2. Division algorithm and Grobner basis. 3.3. Grobner bases and normal elements. 3.4. Grobner bases w.r.t. skew multiplicative K-bases. 3.5. Grobner bases in K[symbol] and KQ. 3.6. (De)homogenized Grobner bases. 3.7. dh-closed homogeneous Grobner bases -- 4. Grobner basis theory meets PBW theory. 4.1. [symbol]-standard basis [symbol]-PBW isomorphism. 4.2. Realizing [symbol]-PBW isomorphism by Grobner basis. 4.3. Classical PBW K-bases vs Grobner bases. 4.4. Solvable polynomial algebras revisited -- 5. Using A[symbol] in terms of Grobner bases. 5.1. The working strategy. 5.2. Ufnarovski graph. 5.3. Determination of Gelfand-Kirillov Dimension. 5.4. Recognizing Noetherianity. 5.5. Recognizing (semi- )primeness and PI-property. 5.6. Anick's resolution over monomial algebras. 5.7. Recognizing finiteness of global dimension. 5.8. Determination of Hilbert series -- 6. Recognizing (non- )homogeneous p-Koszulity via A[symbol]. 6.1. (Non- )homogeneous p-Koszul algebras. 6.2. Anick's resolution and homogeneous p-Koszulity. 6.3. Working in terms of Grobner bases -- 7. A study of Rees algebra by Grobner bases. 7.1. Defining [symbol] by [symbol]. 7.2. Defining [symbol] by [symbol]. 7.3. Recognizing structural properties of [symbol] via [symbol]. 7.4. An application to regular central extensions. 7.5. Algebras defined by dh-closed homogeneous Grobner bases -- 8. Looking for more Grobner bases. 8.1. Lifting (finite) Grobner bases from O[symbol]. 8.2. Lifting (finite) Grobner bases from a class of algebras. 8.3. New examples of Grobner basis theory. 8.4. Skew 2-nomial algebras. 8.5. Almost skew 2-nomial algebras




Harmony of Gr”bner Bases and the Modern Industrial Society


Book Description

This volume consists of research papers and expository survey articles presented by the invited speakers of the conference on OC Harmony of GrAbner Bases and the Modern Industrial SocietyOCO. Topics include computational commutative algebra, algebraic statistics, algorithms of D-modules and combinatorics. This volume also provides current trends on GrAbner bases and will stimulate further development of many research areas surrounding GrAbner bases."




Gröbner Bases and Applications


Book Description

Comprehensive account of theory and applications of Gröbner bases, co-edited by the subject's inventor.




Grobner Bases and Convex Polytopes


Book Description

This book is about the interplay of computational commutative algebra and the theory of convex polytopes. It centres around a special class of ideals in a polynomial ring: the class of toric ideals. They are characterized as those prime ideals that are generated by monomial differences or as the defining ideals of toric varieties (not necessarily normal). The interdisciplinary nature of the study of Gröbner bases is reflected by the specific applications appearing in this book. These applications lie in the domains of integer programming and computational statistics. The mathematical tools presented in the volume are drawn from commutative algebra, combinatorics, and polyhedral geometry.




Commutative Algebra


Book Description

This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.




Computational Commutative Algebra 1


Book Description

This introduction to polynomial rings, Gröbner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.




Gröbner Bases, Coding, and Cryptography


Book Description

Coding theory and cryptography allow secure and reliable data transmission, which is at the heart of modern communication. Nowadays, it is hard to find an electronic device without some code inside. Gröbner bases have emerged as the main tool in computational algebra, permitting numerous applications, both in theoretical contexts and in practical situations. This book is the first book ever giving a comprehensive overview on the application of commutative algebra to coding theory and cryptography. For example, all important properties of algebraic/geometric coding systems (including encoding, construction, decoding, list decoding) are individually analysed, reporting all significant approaches appeared in the literature. Also, stream ciphers, PK cryptography, symmetric cryptography and Polly Cracker systems deserve each a separate chapter, where all the relevant literature is reported and compared. While many short notes hint at new exciting directions, the reader will find that all chapters fit nicely within a unified notation.