Groundwater Flow Understanding


Book Description

Any sustainable groundwater development programme requires knowledge of the prevailing flow system, extending from local to regional scale. This book of selected papers discusses integral groundwater management with scale flow issues and presents methods of defining, preventing, controlling and mitigating negative environmental impacts related to g




Gravitational Systems of Groundwater Flow


Book Description

A thorough overview of gravity-driven groundwater flow, illustrated with practical examples, from one of the founding fathers of the field.




Natural Groundwater Flow


Book Description

Natural Groundwater Flow is an important volume focused on providing a complete description of groundwater flow velocity field and the velocity oriented approach for conducting numerical simulations and other applications. The book presents background information regarding the causes leading to spatial variations of the water table, related concepts of phreatic and specific storage, artificial flow, and flow driven by differences in groundwater density. Block-scale permeability is discussed in detail, and numerical applications using the Galerkin finite element method and pre-modeling techniques for obtaining data required for numerical modeling are examined. The book also presents never-before-published information regarding the theoretical justification and elucidation of hydrological systems analysis to analyze the effects of different spatio-temporal scales. Natural Groundwater Flow is an important reference for environmental physicists, hydrogeologists, civil engineers, mathematical geologists, and petroleum reservoir engineers.




Groundwater Hydrology


Book Description

Groundwater is a vital source of water throughout the world. As the number of groundwater investigations increase, it is important to understand how to develop comprehensive quantified conceptual models and appreciate the basis of analytical solutions or numerical methods of modelling groundwater flow. Groundwater Hydrology: Conceptual and Computational Models describes advances in both conceptual and numerical modelling. It gives insights into the interpretation of field information, the development of conceptual models, the use of computational models based on analytical and numerical techniques, the assessment of the adequacy of models, and the use of computational models for predictive purposes. It focuses on the study of groundwater flow problems and a thorough analysis of real practical field case studies. It is divided into three parts: * Part I deals with the basic principles, including a summary of mathematical descriptions of groundwater flow, recharge estimation using soil moisture balance techniques, and extensive studies of groundwater-surface water interactions. * Part II focuses on the concepts and methods of analysis for radial flow to boreholes including topics such as large diameter wells, multi-layered aquifer systems, aquitard storage and the prediction of long-term yield. * Part III examines regional groundwater flow including situations when vertical flows are important or transmissivities change with saturated depth. Suitable for practising engineers, hydrogeologists, researchers in groundwater and irrigation, mathematical modellers, groundwater scientists, and water resource specialists. Appropriate for upper level undergraduates and MSc students in Departments of Civil Engineering, Environmental Engineering, Earth Science and Physical Geography. It would also be useful for hydrologists, civil engineers, physical geographers, agricultural engineers, consultancy firms involved in water resource projects, and overseas development workers.




Groundwater Hydrology


Book Description

A thorough, up-to-date guide to groundwater science and technology Our understanding of the occurrence and movement of water under the Earth's surface is constantly advancing, with new models, improved drilling equipment, new research, and refined techniques for managing this vital resource. Responding to these tremendous changes, David Todd and new coauthor Larry Mays equip readers with a thorough and up-to-date grounding in the science and technology of groundwater hydrology. Groundwater Hydrology, Third Edition offers a unified presentation of the field, treating fundamental principles, methods, and problems as a whole. With this new edition, you'll be able to stay current with recent developments in groundwater hydrology, learn modern modeling methods, and apply what you've learned to realistic situations. Highlights of the Third Edition * New example problems and case studies, as well as problem sets at the end of each chapter. * A special focus on modern groundwater modeling methods, including a new chapter on modeling (Chapter 9), which describes the U. S. Geological Survey MODFLOW model. * Over 300 new figures and photos. * Both SI and U.S. customary units in the example problems. * Expanded coverage of groundwater contamination by chemicals. * New references at the end of each chapter, which provide sources for research and graduate study. Student and instructor resources for this text are available on the book's website at www.wiley.com/college/todd.




Groundwater Science


Book Description

Groundwater Science, 2E, covers groundwater's role in the hydrologic cycle and in water supply, contamination, and construction issues. It is a valuable resource for students and instructors in the geosciences (with focuses in hydrology, hydrogeology, and environmental science), and as a reference work for professional researchers. This interdisciplinary text weaves important methods and applications from the disciplines of physics, chemistry, mathematics, geology, biology, and environmental science, introducing you to the mathematical modeling and contaminant flow of groundwater. New to the Second Edition:. New chapter on subsurface heat flow and geothermal systems. Expanded content on well construction and design, surface water hydrology, groundwater/ surface water interaction, slug tests, pumping tests, and mounding analysis.. Updated discussions of groundwater modeling, calibration, parameter estimation, and uncertainty. Free software tools for slug test analysis, pumping test analysis, and aquifer modeling. Lists of key terms and chapter contents at the start of each chapter. Expanded end-of-chapter problems, including more conceptual questions. Two-color figures. Homework problems at the end of each chapter and worked examples throughout. Companion website with videos of field exploration and contaminant migration experiments, PDF files of USGS reports, and data files for homework problems. PowerPoint slides and solution manual for adopting faculty.




Analytic Element Modeling of Groundwater Flow


Book Description

Modeling has become an essential tool for the groundwater hydrologist. Where field data is limited, the analytic element method (AEM) is rapidly becoming the modeling method of choice, especially given the availability of affordable modeling software. Analytic Element Modeling of Groundwater Flow provides all the basics necessary to approach AEM successfully, including a presentation of fundamental concepts and a thorough introduction to Dupuit-Forchheimerflow. This book is unique in its emphasis on the actual use of analytic element models. Real-world examples complement material presented in the text. An educational version of the analytic element program GFLOW is included to allow the reader to reproduce the various solutions to groundwater flow problems discussed in the text. Researchers and graduate students in groundwater hydrology, geology, andengineering will find this book an indispensable resource. * * Provides a fundamental introduction to the use of the analytic element method. * Offers a step-by-step approach to groundwater flow modeling. * Includes an educational version of the GFLOW modeling software.




Seepage and Groundwater Flow


Book Description




Applied Groundwater Modeling


Book Description

This second edition is extensively revised throughout with expanded discussion of modeling fundamentals and coverage of advances in model calibration and uncertainty analysis that are revolutionizing the science of groundwater modeling. The text is intended for undergraduate and graduate level courses in applied groundwater modeling and as a comprehensive reference for environmental consultants and scientists/engineers in industry and governmental agencies. - Explains how to formulate a conceptual model of a groundwater system and translate it into a numerical model - Demonstrates how modeling concepts, including boundary conditions, are implemented in two groundwater flow codes-- MODFLOW (for finite differences) and FEFLOW (for finite elements) - Discusses particle tracking methods and codes for flowpath analysis and advective transport of contaminants - Summarizes parameter estimation and uncertainty analysis approaches using the code PEST to illustrate how concepts are implemented - Discusses modeling ethics and preparation of the modeling report - Includes Boxes that amplify and supplement topics covered in the text - Each chapter presents lists of common modeling errors and problem sets that illustrate concepts




Groundwater


Book Description

The authors preceive a trend in the study and practice of groundwater hydrology. They see a science that is emerging from its geological roots and its early hydraulic applications into a full-fledged environmental science. They see a science that is becoming more interdisciplinary in nature and of greater importance in the affairs of man. This book is their response, and they have provided a text that is suited to the study of groundwater during this period of emergence.