Groups, Rings, Lie and Hopf Algebras


Book Description

The volume is almost entirely composed of the research and expository papers by the participants of the International Workshop "Groups, Rings, Lie and Hopf Algebras", which was held at the Memorial University of Newfoundland, St. John's, NF, Canada. All four areas from the title of the workshop are covered. In addition, some chapters touch upon the topics, which belong to two or more areas at the same time. Audience: The readership targeted includes researchers, graduate and senior undergraduate students in mathematics and its applications.




Hopf Algebras and Their Actions on Rings


Book Description

The last ten years have seen a number of significant advances in Hopf algebras. The best known is the introduction of quantum groups, which are Hopf algebras that arose in mathematical physics and now have connections to many areas of mathematics. In addition, several conjectures of Kaplansky have been solved, the most striking of which is a kind of Lagrange's theorem for Hopf algebras. Work on actions of Hopf algebras has unified earlier results on group actions, actions of Lie algebras, and graded algebras. This book brings together many of these recent developments from the viewpoint of the algebraic structure of Hopf algebras and their actions and coactions. Quantum groups are treated as an important example, rather than as an end in themselves. The two introductory chapters review definitions and basic facts; otherwise, most of the material has not previously appeared in book form. Providing an accessible introduction to Hopf algebras, this book would make an excellent graduate textbook for a course in Hopf algebras or an introduction to quantum groups.




Groups, Rings, Lie and Hopf Algebras


Book Description

The volume is almost entirely composed of the research and expository papers by the participants of the International Workshop "Groups, Rings, Lie and Hopf Algebras", which was held at the Memorial University of Newfoundland, St. John's, NF, Canada. All four areas from the title of the workshop are covered. In addition, some chapters touch upon the topics, which belong to two or more areas at the same time. Audience: The readership targeted includes researchers, graduate and senior undergraduate students in mathematics and its applications.




Groups, Rings and Group Rings


Book Description

Represents the proceedings of the conference on Groups, Rings and Group Rings, held July 28 - August 2, 2008, in Ubatuba, Brazil. This title contains results in active research areas in the theory of groups, group rings and algebras (including noncommutative rings), polynomial identities, Lie algebras and superalgebras.




Groups, Rings, Group Rings, and Hopf Algebras


Book Description

This volume contains the proceedings of the International Conference on Groups, Rings, Group Rings, and Hopf Algebras, held October 2–4, 2015 at Loyola University, Chicago, IL, and the AMS Special Session on Groups, Rings, Group Rings, and Hopf Algebras, held October 3–4, 2015, at Loyola University, Chicago, IL. Both conferences were held in honor of Donald S. Passman's 75th Birthday. Centered in the area of group rings and algebras, this volume contains a mixture of cutting edge research topics in group theory, ring theory, algebras and their representations, Hopf algebras and quantum groups.




Lectures on Algebraic Quantum Groups


Book Description

This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.




Groups, Rings and Algebras


Book Description

This is a companion volume to the conference in honor of Donald S. Passman held in Madison, Wisconsin in June 2005. It contains research papers on Algebras, Group Rings, Hopf Algebras, Invariant Theory, Lie Algebras and their Enveloping Algebras, Noncommutative Algebraic Geometry, Noncommutative Rings, and other topics. The papers represent an important part of the latest research in these areas.




Introduction to Affine Group Schemes


Book Description

Ah Love! Could you and I with Him consl?ire To grasp this sorry Scheme of things entIre' KHAYYAM People investigating algebraic groups have studied the same objects in many different guises. My first goal thus has been to take three different viewpoints and demonstrate how they offer complementary intuitive insight into the subject. In Part I we begin with a functorial idea, discussing some familiar processes for constructing groups. These turn out to be equivalent to the ring-theoretic objects called Hopf algebras, with which we can then con struct new examples. Study of their representations shows that they are closely related to groups of matrices, and closed sets in matrix space give us a geometric picture of some of the objects involved. This interplay of methods continues as we turn to specific results. In Part II, a geometric idea (connectedness) and one from classical matrix theory (Jordan decomposition) blend with the study of separable algebras. In Part III, a notion of differential prompted by the theory of Lie groups is used to prove the absence of nilpotents in certain Hopf algebras. The ring-theoretic work on faithful flatness in Part IV turns out to give the true explanation for the behavior of quotient group functors. Finally, the material is connected with other parts of algebra in Part V, which shows how twisted forms of any algebraic structure are governed by its automorphism group scheme.




Yetter-Drinfel'd Hopf Algebras over Groups of Prime Order


Book Description

Being the first monograph devoted to this subject, the book addresses the classification problem for semisimple Hopf algebras, a field that has attracted considerable attention in the last years. The special approach to this problem taken here is via semidirect product decompositions into Yetter-Drinfel'd Hopf algebras and group rings of cyclic groups of prime order. One of the main features of the book is a complete treatment of the structure theory for such Yetter-Drinfel'd Hopf algebras.




Tensor Categories


Book Description

Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.