Properties, Growth and Applications of Diamond


Book Description

Recent breakthroughs in the synthesis of diamond have led to increased availability at lower cost. This has spurred R&D into its characterization and application in machine tools, optical coatings, X-ray windows and light-emitting optoelectronic devices. This book draws together expertise from some 60 researchers in Europe and the USA working on bulk and thin film diamond. All fully refereed, the contributions are combined to form a highly structured volume with reviews, evaluations, tables and illustrative material, together with expert guidance to the literature.




Properties and Growth of Diamond


Book Description

Diamond research holds the promise of applications as diverse as machine tooling, optical coatings, X-ray windows and light-emitting optoelectronic devices. This volume contains reviews, evaluations and guidance on over 2000 sources from scientific journals on bulk and thin film diamonds.




Thin Film Diamond


Book Description

This work, written by leading international authorities, deals with nucleation growth and processing, characterization and electrical, thermal, optical and mechanical properties of thin film diamond. The final chapters are devoted to the broad range of applications of this material.




Diamond: Electronic Properties and Applications


Book Description

The use of diamond for electronic applications is not a new idea. As early as the 1920's diamonds were considered for their use as photoconductive detectors. However limitations in size and control of properties naturally limited the use of diamond to a few specialty applications. With the development of diamond synthesis from the vapor phase has come a more serious interest in developing diamond-based electronic devices. A unique combination of extreme properties makes diamond partiCularly well suited for high speed, high power, and high temperature applications. Vapor phase deposition of diamond allows large area films to be deposited, whose properties can potentially be controlled. Since the process of diamond synthesis was first realized, great progress have been made in understanding the issues important for growing diamond and fabricating electronic devices. The quality of both intrinsic and doped diamond has improved greatly to the point that viable applications are being developed. Our understanding of the properties and limitations has also improved greatly. While a number of excellent references review the general properties of diamond, this volume summarizes the great deal of literature related only to electronic properties and applications of diamond. We concentrate only on diamond; related materials such as diamond-like carbon (DLC) and other wide bandgap semiconductors are not treated here. In the first chapter Profs. C. Y. Fong and B. M. Klein discuss the band structure of single-crystal diamond and its relation to electronic properties.




Optical Properties of Diamond


Book Description

This handbook is the most comprehensive compilation of data on the optical properties of diamond ever written. It presents a multitude of data previously for the first time in English. The author provides quick access to the most comprehensive information on all aspects of the field.




Thin-Film Diamond I


Book Description

This volume reviews the state of the art of thin film diamond, a very promising new semiconductor that may one day rival silicon as the material of choice for electronics. Diamond has the following important characteristics; it is resistant to radiation damage, chemically inert and biocompatible and it will become "the material" for bio-electronics, in-vivo applications, radiation detectors and high-frequency devices. Thin-Film Diamond is the first book to summarize state of the art of CVD diamond in depth. It covers the most recent results regarding growth and structural properties, doping and defect characterization, hydrogen in and on diamond as well as surface properties in general, applications of diamond in electrochemistry, as detectors, and in surface acoustic wave devices. · Accessible by both experts and non-experts in the field of semi-conductors research and technology, each chapter is written in a tutorial format· Helping engineers to manufacture devices with optimized electronic properties· Truly international, this volume contains chapters written by recognized experts representing academic and industrial institutions from Europe, Japan and the US




Thin-Film Diamond II


Book Description

Part II reviews the state of the art of thin film diamond a very promising new semiconductor that may one day rival silicon as the material of choice for electronics. Diamond has the following important characteristics; it is resistant to radiation damage, chemically inert and biocompatible and it will become "the material" for bio-electronics, in-vivo applications, radiation detectors and high-frequency devices. Thin-Film Diamond II is the first book to summarize state of the art of CVD diamond in depth. It covers the most recent results regarding growth and structural properties, doping and defect characterization, hydrogen in and on diamond as well as surface properties in general, applications of diamond in electrochemistry, as detectors, and in surface acoustic wave devices * Accessible by both experts and non-experts in the field of semi-conductors research and technology, each chapter is written in a tutorial format· * Assisting engineers to manufacture devices with optimized electronic properties· * Truly international, this volume contains chapters written by recognized experts representing academic and industrial institutions from Europe, Japan and the US




Diamond Films and Coatings


Book Description

Reviews diamond films and coatings covering their properties, growth, deposition, characterization, and applications.




Diamond and Diamond-like Films and Coatings


Book Description

Diamond films grown by activated chemical vapor deposition have superlative thermal, mechanical, optical, and electronic properties combined with a very high degree of chemical inertness to most environments. These properties, together with the ability to fabricate films and shapes of considerable size, promise an exciting new material with many applications. Some applications are on the verge of commercialization but many await a few more technological developments. Diamond-like films are already employed in both commercial and military applications. The popular press, as well as the scientific and technological and industrial communities, are increasingly interested in the potential for future development of these materials. Although there are many technical papers and review articles published, there is no Single comprehensive introduction to these technologies. The Scientific Affairs Division of NATO recognized the need and the future importance of these technologies and authorized an Advanced Study Institute on diamond and diamond-like films. NATO Advanced Study Institutes are high level teaching activities at which a carefully defined subject is presented in a systematic and coherently structured program. The subject is treated in considerable depth by lecturers eminent in their fields and of international standing. The presentations are made to students who are scientists in the field or who possess an advanced general scientific background.