Guidance for Good Bridge Design


Book Description

Addressed to designers and even more so to owners and project managers, this part is meant as a guide to an efficient selection of designers and contractors, and to the preparation of fair contracts providing high quality at reasonable cost. Clearly, a good design must be paid for at its real cost; economising on the design cost can be extremely counterproductive for the owner when considering the final whole-life cost of the project. In addition, it was considered very important to address the designer’s responsibilities and relations with other participants in large projects, and finally design philosophy itself. Part 2 – Design and construction aspects This more technical part is mainly addressed to bridge designers and devoted to a systematic analysis of structural and constructional bridge concepts. Considering the importance of erection techniques in the development of bridge design, this second part of the guide starts by a description of the different construction methods, their advantages and draw-backs, their particularities and, of course, by defining the domain of their most efficient applications. Another main chapter is devoted to the proper design of cross-sections. And finally, a third main chapter deals in detail with the influence of construction techniques on design.




Bridge Design


Book Description

A comprehensive guide to bridge design Bridge Design - Concepts and Analysis provides a unique approach, combining the fundamentals of concept design and structural analysis of bridges in a single volume. The book discusses design solutions from the authors’ practical experience and provides insights into conceptual design with concrete, steel or composite bridge solutions as alternatives. Key features: Principal design concepts and analysis are dealt with in a unified approach. Execution methods and evolution of the static scheme during construction are dealt with for steel, concrete and composite bridges. Aesthetics and environmental integration of bridges are considered as an issue for concept design. Bridge analysis, including modelling and detail design aspects, is discussed for different bridge typologies and structural materials. Specific design verification aspects are discussed on the basis of present design rules in Eurocodes. The book is an invaluable guide for postgraduate students studying bridge design, bridge designers and structural engineers.




Guidelines for the Design of Footbridges


Book Description

The intention of fib Bulletin 32 is to present guidelines for the design of footbridges as well as bridges accommodating cyclists and bridleways (equestrian paths). The need for these guidelines comes from the fact that structural engineers designing footbridges currently have to spend considerable time and energy collecting information from numerous documents, codes and recommendations to make design decisions. There seems to be no international document dedicated solely to the design of footbridges. These guidelines attempt to provide a concentrated source of information regarding all design issues specific to footbridges. It is meant to be a 'liberal' document in the sense that it promotes new, innovative and bold yet prudent designs by sharing the experience of the authors, summarizing specifications given in codes, and presenting a collection of examples of well-designed structures or structural details from around the world. It is not intended to be an international code that specifies limits and admissible values, thus encouraging timid, conservative designs that are repetitions of approved and tested designs. Indeed, it may be the very fact that no international code exists specifically for footbridges that encourages the wide variety of footbridge designs found today. It should be noted that numerous guidelines, codes and books have been published on bridge design in general. Information given in those publications that is also applicable to footbridges is not repeated in Bulletin 32. The chapters of these guidelines all follow the same pattern: an introduction to the subject, general guidelines as well as do's and don'ts; a summary of information found in existing international codes, recommendations, experience of the authors, and built examples with comparison and comments on this information; examples. Plenty of illustrations and photographs help to visualize the themes of this work. The last chapter, 'Case Studies', contains footbridges each with a short summary of main structural data and references for further reading.




Bridge Design


Book Description

A comprehensive guide to bridge design Bridge Design - Concepts and Analysis provides a unique approach, combining the fundamentals of concept design and structural analysis of bridges in a single volume. The book discusses design solutions from the authors’ practical experience and provides insights into conceptual design with concrete, steel or composite bridge solutions as alternatives. Key features: Principal design concepts and analysis are dealt with in a unified approach. Execution methods and evolution of the static scheme during construction are dealt with for steel, concrete and composite bridges. Aesthetics and environmental integration of bridges are considered as an issue for concept design. Bridge analysis, including modelling and detail design aspects, is discussed for different bridge typologies and structural materials. Specific design verification aspects are discussed on the basis of present design rules in Eurocodes. The book is an invaluable guide for postgraduate students studying bridge design, bridge designers and structural engineers.




ICE Manual of Bridge Engineering


Book Description

Addresses key topic within bridge engineering, from history and aesthetics to design, construction and maintenance issues. This book is suitable for practicing civil and structural engineers in consulting firms and government agencies, bridge contractors, research institutes, and universities and colleges.




Simplified LRFD Bridge Design


Book Description

Developed to comply with the fifth edition of the AASHTO LFRD Bridge Design Specifications [2010]––Simplified LRFD Bridge Design is "How To" use the Specifications book. Most engineering books utilize traditional deductive practices, beginning with in-depth theories and progressing to the application of theories. The inductive method in the book uses alternative approaches, literally teaching backwards. The book introduces topics by presenting specific design examples. Theories can be understood by students because they appear in the text only after specific design examples are presented, establishing the need to know theories. The emphasis of the book is on step-by-step design procedures of highway bridges by the LRFD method, and "How to Use" the AASHTO Specifications to solve design problems. Some of the design examples and practice problems covered include: Load combinations and load factors Strength limit states for superstructure design Design Live Load HL- 93 Un-factored and Factored Design Loads Fatigue Limit State and fatigue life; Service Limit State Number of design lanes Multiple presence factor of live load Dynamic load allowance Distribution of Live Loads per Lane Wind Loads, Earthquake Loads Plastic moment capacity of composite steel-concrete beam LRFR Load Rating Simplified LRFD Bridge Design is a study guide for engineers preparing for the PE examination as well as a classroom text for civil engineering students and a reference for practicing engineers. Eight design examples and three practice problems describe and introduce the use of articles, tables, and figures from the AASHTO LFRD Bridge Design Specifications. Whenever articles, tables, and figures in examples appear throughout the text, AASHTO LRFD specification numbers are also cited, so that users can cross-reference the material.




Design of Highway Bridges


Book Description

Up-to-date coverage of bridge design and analysis revised to reflect the fifth edition of the AASHTO LRFD specifications Design of Highway Bridges, Third Edition offers detailed coverage of engineering basics for the design of short- and medium-span bridges. Revised to conform with the latest fifth edition of the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications, it is an excellent engineering resource for both professionals and students. This updated edition has been reorganized throughout, spreading the material into twenty shorter, more focused chapters that make information even easier to find and navigate. It also features: Expanded coverage of computer modeling, calibration of service limit states, rigid method system analysis, and concrete shear Information on key bridge types, selection principles, and aesthetic issues Dozens of worked problems that allow techniques to be applied to real-world problems and design specifications A new color insert of bridge photographs, including examples of historical and aesthetic significance New coverage of the "green" aspects of recycled steel Selected references for further study From gaining a quick familiarity with the AASHTO LRFD specifications to seeking broader guidance on highway bridge design Design of Highway Bridges is the one-stop, ready reference that puts information at your fingertips, while also serving as an excellent study guide and reference for the U.S. Professional Engineering Examination.







Bridge Design and Evaluation


Book Description

A succinct, real-world approach to complete bridge system design and evaluation Load and Resistance Factor Design (LRFD) and Load and Resistance Factor Rating (LRFR) are design and evaluation methods that have replaced or offered alternatives to other traditional methods as the new standards for designing and load-rating U.S. highway bridges. Bridge Design and Evaluation covers complete bridge systems (substructure and superstructure) in one succinct, manageable package. It presents real-world bridge examples demonstrating both their design and evaluation using LRFD and LRFR. Designed for a 3- to 4-credit undergraduate or graduate-level course, it presents the fundamentals of the topic without expanding needlessly into advanced or specialized topics. Important features include: Exclusive focus on LRFD and LRFR Hundreds of photographs and figures of real bridges to connect the theoretical with the practical Design and evaluation examples from real bridges including actual bridge plans and drawings and design methodologies Numerous exercise problems Specific design for a 3- to 4-credit course at the undergraduate or graduate level The only bridge engineering textbook to cover the important topics of bridge evaluation and rating Bridge Design and Evaluation is the most up-to-date and inclusive introduction available for students in civil engineering specializing in structural and transportation engineering.




AASHTO Guide Specifications for LRFD Seismic Bridge Design


Book Description

Covers seismic design for typical bridge types and applies to non-critical and non-essential bridges. Approved as an alternate to the seismic provisions in the AASHTO LRFD Bridge Design Specifications. Differs from the current procedures in the LRFD Specifications in the use of displacement-based design procedures, instead of the traditional force-based "R-Factor" method. Includes detailed guidance and commentary on earthquake resisting elements and systems, global design strategies, demand modeling, capacity calculation, and liquefaction effects. Capacity design procedures underpin the Guide Specifications' methodology; includes prescriptive detailing for plastic hinging regions and design requirements for capacity protection of those elements that should not experience damage.