Guide to Simulation-Based Disciplines


Book Description

This invaluable text/reference reviews the state of the art in simulation-based approaches across a wide range of different disciplines, and provides evidence of using simulation-based approaches to advance these disciplines. Highlighting the benefits that simulation can bring to any field, the volume presents case studies by the leading experts from such diverse domains as the life sciences, engineering, architecture, arts, and social sciences. Topics and features: includes review questions at the end of every chapter; provides a broad overview of the evolution of the concept of simulation, stressing its importance across numerous sectors and disciplines; addresses the role of simulation in engineering design, and emphasizes the benefits of integrating simulation into the systems engineering paradigm; explains the relation of simulation with Cyber-Physical Systems and the Internet of Things, and describes a simulation infrastructure for complex adaptive systems; investigates how simulation is used in the Software Design Life Cycle to assess complex solutions, and examines the use of simulation in architectural design; reviews the function and purpose of simulation within the context of the scientific method, and its contribution to healthcare and health education training; discusses the position of simulation in research in the social sciences, and describes the simulation of service systems for simulation-based enterprise management; describes the role of simulation in learning and education, as well as in in military training. With its near-exhaustive coverage of disciplines, this comprehensive collection is essential reading for all researchers, practitioners and students seeking insights into the use of various modeling paradigms and the need for robust simulation infrastructure to advance their field into a computational future.




The Profession of Modeling and Simulation


Book Description

The definite guide to the theory, knowledge, technical expertise, and ethical considerations that define the M&S profession From traffic control to disaster management, supply chain analysis to military logistics, healthcare management to new drug discovery, modeling and simulation (M&S) has become an essential tool for solving countless real-world problems. M&S professionals are now indispensable to how things get done across virtually every aspect of modern life. This makes it all the more surprising that, until now, no effort has been made to systematically codify the core theory, knowledge, and technical expertise needed to succeed as an M&S professional. This book brings together contributions from experts at the leading edge of the modeling and simulation profession, worldwide, who share their priceless insights into issues which are fundamental to professional success and career development in this critically important field. Running as a common thread throughout the book is an emphasis on several key aspects of the profession, including the essential body of knowledge underlying the M&S profession; the technical discipline of M&S; the ethical standards that should guide professional conduct; and the economic and commercial challenges today’s M&S professionals face. • Demonstrates applications of M&S tools and techniques in a variety of fields—such as engineering, operations research, and cyber environments—with over 500 types of simulations • Highlights professional and academic aspects of the field, including preferred programming languages, professional academic and certification programs, and key international societies • Shows why M&S professionals must be fully versed in the theory, concepts, and tools needed to address the challenges of cyber environments The Profession of Modeling and Simulation is a valuable resource for M&S practitioners, developers, and researchers working in industry and government. Simulation professionals, including administrators, managers, technologists, faculty members, and scholars within the physical sciences, life sciences, and engineering fields will find it highly useful, as will students planning to pursue a career in the M&S profession. “ ...nearly three dozen experts in Modeling and Simulation (M&S) come together to make a compelling case for the recognition of M&S as a profession... Important reading for anyone seeking to elevate the standing of this vital field.” Alfred (Al) Grasso, President & CEO, The MITRE Corporation Andreas Tolk, PhD, is Technology Integrator for the Modeling, Simulation, Experimentation, and Analytics Division of The MITRE Corporation, an adjunct professor in the Department of Engineering Management and Systems Engineering and the Department for Modeling, Simulation, and Visualization Engineering at Old Dominion University, and an SCS fellow. Tuncer Ören, PhD, is Professor Emeritus of Computer Science at the University of Ottawa. He is an SCS fellow and an inductee to SCS Modeling and Simulation Hall of Fame. His research interests include advancing methodologies, ethics, body of knowledge, and terminology of modeling and simulation.




Simulation in Healthcare Education


Book Description

Simulation in healthcare education has a long history, yet in many ways, we have been reinventing the wheel during the last 25 years. Historically, simulators have been much more than simple models, and we can still learn from aspects of simulation used hundreds of years ago. This book gives a narrative history of the development of simulators from the early 1700s to the middle of the 20th century when simulation in healthcare appeared to all but die out. It is organized around the development of simulation in different countries and includes at the end a guide to simulators in museums and private collections throughout the world. The aim is to increase understanding of simulation in the professional education of healthcare providers by exploring the historical context of simulators that were developed in the past, what they looked like, how they were used, and examples of simulator use that led to significant harm and an erosion of standards. The book is addressed to the healthcare simulation community and historians of medicine. The latter in particular will appreciate the identification and use of historic sources written in Latin, German, Italian, French, Polish and Spanish as well as English.




A Guide to Simulation


Book Description

Simulation means driving a model of a system with suitable inputs and observing the corresponding outputs. It is widely applied in engineering, in business, and in the physical and social sciences. Simulation method ology araws on computer. science, statistics, and operations research and is now sufficiently developed and coherent to be called a discipline in its own right. A course in simulation is an essential part of any operations re search or computer science program. A large fraction of applied work in these fields involves simulation; the techniques of simulation, as tools, are as fundamental as those of linear programming or compiler construction, for example. Simulation sometimes appears deceptively easy, but perusal of this book will reveal unexpected depths. Many simulation studies are statistically defective and many simulation programs are inefficient. We hope that our book will help to remedy this situation. It is intended to teach how to simulate effectively. A simulation project has three crucial components, each of which must always be tackled: (1) data gathering, model building, and validation; (2) statistical design and estimation; (3) programming and implementation. Generation of random numbers (Chapters 5 and 6) pervades simulation, but unlike the three components above, random number generators need not be constructed from scratch for each project. Usually random number packages are available. That is one reason why the chapters on random numbers, which contain mainly reference material, follow the ch!lPters deal ing with experimental design and output analysis.




Body of Knowledge for Modeling and Simulation


Book Description

Commissioned by the Society for Modeling and Simulation International (SCS), this needed, useful new ‘Body of Knowledge’ (BoK) collects and organizes the common understanding of a wide collection of professionals and professional associations. Modeling and simulation (M&S) is a ubiquitous discipline that lays the computational foundation for real and virtual experimentation, clearly stating boundaries—and interactions—of systems, data, and representations. The field is well known, too, for its training support via simulations and simulators. Indeed, with computers increasingly influencing the activities of today’s world, M&S is the third pillar of scientific understanding, taking its place along with theory building and empirical observation. This valuable new handbook provides intellectual support for all disciplines in analysis, design and optimization. It contributes increasingly to the growing number of computational disciplines, addressing the broad variety of contributing as well as supported disciplines and application domains. Further, each of its sections provide numerous references for further information. Highly comprehensive, the BoK represents many viewpoints and facets, captured under such topics as: Mathematical and Systems Theory Foundations Simulation Formalisms and Paradigms Synergies with Systems Engineering and Artificial Intelligence Multidisciplinary Challenges Ethics and Philosophy Historical Perspectives Examining theoretical as well as practical challenges, this unique volume addresses the many facets of M&S for scholars, students, and practitioners. As such, it affords readers from all science, engineering, and arts disciplines a comprehensive and concise representation of concepts, terms, and activities needed to explain the M&S discipline. Tuncer Ören is Professor Emeritus at the University of Ottawa. Bernard Zeigler is Professor Emeritus at the University of Arizona. Andreas Tolk is Chief Scientist at The MITRE Corporation. All three editors are long-time members and Fellows of the Society for Modeling and Simulation International. Under the leadership of three SCS Fellows, Dr. Ören, University of Ottawa, Dr. Zeigler, The University of Arizona, and Dr. Tolk, The MITRE Corporation, more than 50 international scholars from 15 countries provided insights and experience to compile this initial M&S Body of Knowledge.




Digital Transformation in a Post-Covid World


Book Description

This book explores the innovations, disruptions and changes that are required to adapt in a fast-evolving landscape due to the extraordinary circumstances triggered by the COVID-19 pandemic. Recognized experts from around the world share their research and professional experience on how the working environment, as well as the world around them, have changed due to the pandemic. Chapters consider how different fields across technology and business have been affected by this new, dramatic scenario and the drastic consequences that the pandemic had on them. With diverse contributions stemming from public health, technology strategies, urban planning and sociology to sustainable management, this volume is articulated into four distinct but complementary sections of People, Process, Planet, and Prosperity influencing the post-COVID world. This book will be of great interest to those in the fields of computer science and information technology, as well as those studying the impact and effects that COVID-19 is having on society.




Engineering Emergence


Book Description

This book examines the nature of emergence in context of man-made (i.e. engineered) systems, in general, and system of systems engineering applications, specifically. It investigates emergence to interrogate or explore the domain space from a modeling and simulation perspective to facilitate understanding, detection, classification, prediction, control, and visualization of the phenomenon. Written by leading international experts, the text is the first to address emergence from an engineering perspective. "System engineering has a long and proud tradition of establishing the integrative view of systems. The field, however, has not always embraced and assimilated well the lessons and implications from research on complex adaptive systems. As the editors’ note, there have been no texts on Engineering Emergence: Principles and Applications. It is therefore especially useful to have this new, edited book that pulls together so many of the key elements, ranging from the theoretical to the practical, and tapping into advances in methods, tools, and ways to study system complexity. Drs. Rainey and Jamshidi are to be congratulated both for their vision of the book and their success in recruiting contributors with so much to say. Most notable, however, is that this is a book with engineering at its core. It uses modeling and simulation as the language in which to express principles and insights in ways that include tight thinking and rigor despite dealing with notably untidy and often surprising phenomena." — Paul K. Davis, RAND and Frederick S. Pardee RAND Graduate School The first chapter is an introduction and overview to the text. The book provides 12 chapters that have a theoretical foundation for this subject. Includes 7 specific example chapters of how various modeling and simulation paradigms/techniques can be used to investigate emergence in an engineering context to facilitate understanding, detection, classification, prediction, control and visualization of emergent behavior. The final chapter offers lessons learned and the proposed way-ahead for this discipline.




Guidance, Control and Docking for CubeSat-based Active Debris Removal


Book Description

While a paradigm shift in space industry has already started involving “mass production” of higher standardized, large distributed systems such as constellations, there are no effective solutions existing for the “mass removal” of satellites. Many indicators point to a further increase in the space traffic in Earth orbit in the near future, which could imply new dynamics in the evolution of the space debris environment. Even in case of diligent compliance with the Inter-Agency Space Debris Coordination Committee (IADC) mitigation guidelines, the growth in space traffic complicates its management and drastically increases the probability of accidents and system failures. NASA scientist Donald J. Kessler proposed a scenario in which the density of objects in low Earth orbit is high enough that collisions between objects could cause a cascade that renders space unusable for many generations. Therefore, a reliable and affordable capability of removing or servicing non-functional objects is essential to guarantee sustainable access to Earth orbit. Recently, the CubeSat design standard introduced a new class of cost-efficient small spacecraft and thereby offers a potential solution to the active debris removal (ADR) problem. The development of a novel “CubeSat-compatible” ADR technology has significant advantages such as the use of commercial off-the-shelf parts, reduced launch cost, and reduced design efforts. This thesis presents –in the frame of an ADR mission– an approach to advanced rendezvous and docking with non-cooperative targets via CubeSat. It covers the design process of simulation systems used for verification purposes, the ideation and implementation of novel guidance, control, and docking techniques, as well as their verification and evaluation. The outcome of this research is a series of validated software tools, processes, technical devices, and algorithms for automated approach and docking, that have been tested in simulation and with prototype hardware.




Simulation for Cyber-Physical Systems Engineering


Book Description

This comprehensive book examines a range of examples, prepared by a diverse group of academic and industry practitioners, which demonstrate how cloud-based simulation is being extensively used across many disciplines, including cyber-physical systems engineering. This book is a compendium of the state of the art in cloud-based simulation that instructors can use to inform the next generation. It highlights the underlying infrastructure, modeling paradigms, and simulation methodologies that can be brought to bear to develop the next generation of systems for a highly connected society. Such systems, aptly termed cyber-physical systems (CPS), are now widely used in e.g. transportation systems, smart grids, connected vehicles, industrial production systems, healthcare, education, and defense. Modeling and simulation (M&S), along with big data technologies, are at the forefront of complex systems engineering research. The disciplines of cloud-based simulation and CPS engineering are evolving at a rapid pace, but are not optimally supporting each other’s advancement. This book brings together these two communities, which already serve multi-disciplinary applications. It provides an overview of the simulation technologies landscape, and of infrastructure pertaining to the use of cloud-based environments for CPS engineering. It covers the engineering, design, and application of cloud simulation technologies and infrastructures applicable for CPS engineering. The contributions share valuable lessons learned from developing real-time embedded and robotic systems deployed through cloud-based infrastructures for application in CPS engineering and IoT-enabled society. The coverage incorporates cloud-based M&S as a medium for facilitating CPS engineering and governance, and elaborates on available cloud-based M&S technologies and their impacts on specific aspects of CPS engineering.




Summer of Simulation


Book Description

This book is based on the “Summer Simulation Multi-Conference” (SCSC), which has been a prominent platform for the dissemination of scholarly research in the M&S community for the last 50 years. In keeping with the conference’s seasonal title, the authors have called this half-century “the summer of simulation,” and it has led not only to simulation-based disciplines but also simulation as a discipline. This book discusses contributions from the SCSC in four sections. The first section is an introduction to the work. The second section is devoted to contributions from simulation research fellows who were associated with the SCSC, while the third section features the SCSC’s most influential contributions. Lastly, the fourth section includes contributions from the best papers in the last five years. Features: • A comprehensive volume dedicated to one of the simulation domain’s major conferences: the SCSC • Offers a scientometric analysis of the SCSC • Revisits high-impact topics from 50 years of the SCSC • Includes chapters by simulation research fellows associated with the SCSC • Presents updated best-paper contributions from the recent conference This work will be of value to anyone interested in the evolution of modeling and simulation over the last fifty years. Readers will gain a perspective on what drove this evolution, and develop an understanding of the key contributions that allowed this technology to grow into its own academic discipline and profession.