Guidelines for Sediment Tracing Using the Compound Specific Carbon Stable Isotope Technique


Book Description

This publication is intended to support the proper use of the compound specific stable isotope (CSSI) technique for identifying sources of sediment within agroecosystems. Based on the measurement of Carbon-13 natural abundance signatures of fatty acids in the soil, this technique allows to discriminate and apportion the sources soil contribution that originate from different land use. While covering the fundamental concepts of the CSSI technique, this publication is unique in providing step-by-step instructions for scientists, technicians and students on how to effectively use this isotopic approach. This comprehensive illustrated guide highlights new opportunities for improving area-wide soil conservation strategies in fragile agricultural landscapes.




That's Phat


Book Description

Rivers and lakes are subject to various forms of pollution from anthropogenic activity and natural sources. Many pollutants, such as those from agricultural runoff, are transported in rivers by binding to sediment. Sediment itself is a pollutant, and is often an indicator of terrestrial erosive processes. Common methods of establishing sediment provenance on a broad scale include the use of fallout radio nuclides and geochemistry. In 2008, Dr. Max Gibbs published a sediment tracing article on the use of compound-specific stable isotopes (CSSIs) of plant origin which identified sediment sources based on land use in sub-tropical New Zealand. The objective of the research undertaken here was to apply the CSSI concept to agricultural watersheds in a northern, temperate climate. Two watersheds were selected: the Horsefly River Watershed (HRW) near Horsefly, BC, Canada and the South Tobacco Creek Watershed (STCW), near Miami, Manitoba, Canada. The HRW represented a mostly pristine watershed. The STCW represented a heavily cropped agricultural watershed. The HRW samples were used to develop laboratory methodology, while the STCW samples were used to evaluate the CSSI technique using carbon stable isotopes. The dissertation addresses the following: (i) literature review of plant biomarkers and spatial/temporal variability of CSSIs due to biological, environmental and analytical factors; (ii) methodology, analysis and variability associated with bulk soil and sediment isotope determination; (iii) methodologies for processing soil and sediment from sampling to isotope analysis; and (iv) spatial and temporal variability of CSSI tracers. The CSSI tracers were evaluated to reveal spatial and temporal variability of VLCFA concentrations and isotope signatures at the point, transect and field scales. Weighted t-tests were used to differentiate sediment sources spatially and temporally. The use of bulk carbon as a proxy for VLCFA concentrations in source apportioning was also explored. The work presented here demonstrates the ability of CSSIs to differentiate sediment sources based on land use. The development of analytical methods and the resulting analysis of soil and sediment extracts have indicated that VLCFAs may be isolated and quantified to generate reliable isotope data. The methods will hopefully lead to the standardization of CSSIs protocols.




Stable Isotope Technique to Assess Intake of Human Milk in Breastfed Infants


Book Description

This publication was developed by an international group of experts as an integral part of the IAEA's efforts to contribute to the transfer of technology and knowledge in nutrition. Its aim is to assist Member States in their efforts to combat malnutrition by facilitating the use of relevant nuclear techniques. The stable (non-radioactive) isotope technique has been developed to assess intake of human milk in breastfed infants. The practical application of the stable isotope technique, based on analysis of deuterium by Fourier transform infrared spectrometry (FTIR), is presented in this book.




Compound-specific Stable Isotope Analysis


Book Description

The use of Compound-specific Stable Isotope Analysis (CSIA) is increasing in many areas of science and technology for source allocation, authentication, and characterization of transformation reactions. Until now, there have been no textbooks available for students with an analytical chemical background or basic introductory books emphasising the instrumentation and theory. This book is the first to focus solely on stable isotope analysis of individual compounds in sometimes complex mixtures. It acts as both a lecture companion for students and a consultant for advanced scientists in fields including forensic and environmental science. The book starts with a brief history of the field before going on to explain stable isotopes from scratch. The different ways to express isotope abundances are introduced together with isotope effects and isotopic fractionation. A detailed account of the required technical equipment and general procedures for CSIA is provided. This includes sections on derivatization and the use of microextraction techniques in GC-IRMS. The very important topic of referencing and calibration in CSIA is clearly described. This differs from approaches used in quantitative analysis and is often difficult for the newcomer to comprehend. Examples of successful applications of CSIA in food authenticity, forensics, archaeology, doping control, environmental science, and extraterrestrial materials are included. Applications in isotope data treatment and presentation are also discussed and emphasis is placed on the general conclusions that can be drawn from the uses of CSIA. Further instrumental developments in the field are highlighted and selected experiments are introduced that may act as a basis for a short practical course at graduate level.




Encyclopedia of Geochemistry


Book Description

The Encyclopedia is a complete and authoritative reference work for this rapidly evolving field. Over 200 international scientists, each experts in their specialties, have written over 330 separate topics on different aspects of geochemistry including geochemical thermodynamics and kinetics, isotope and organic geochemistry, meteorites and cosmochemistry, the carbon cycle and climate, trace elements, geochemistry of high and low temperature processes, and ore deposition, to name just a few. The geochemical behavior of the elements is described as is the state of the art in analytical geochemistry. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to the essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and citation indices are comprehensive and extensive. Geochemistry applies chemical techniques and approaches to understanding the Earth and how it works. It touches upon almost every aspect of earth science, ranging from applied topics such as the search for energy and mineral resources, environmental pollution, and climate change to more basic questions such as the Earth’s origin and composition, the origin and evolution of life, rock weathering and metamorphism, and the pattern of ocean and mantle circulation. Geochemistry allows us to assign absolute ages to events in Earth’s history, to trace the flow of ocean water both now and in the past, trace sediments into subduction zones and arc volcanoes, and trace petroleum to its source rock and ultimately the environment in which it formed. The earliest of evidence of life is chemical and isotopic traces, not fossils, preserved in rocks. Geochemistry has allowed us to unravel the history of the ice ages and thereby deduce their cause. Geochemistry allows us to determine the swings in Earth’s surface temperatures during the ice ages, determine the temperatures and pressures at which rocks have been metamorphosed, and the rates at which ancient magma chambers cooled and crystallized. The field has grown rapidly more sophisticated, in both analytical techniques that can determine elemental concentrations or isotope ratios with exquisite precision and in computational modeling on scales ranging from atomic to planetary.







Tracking Environmental Change Using Lake Sediments


Book Description

Theory Instrumentation NIR analysis of sediment samples Uses of NIRS in palaeolimnology Future perspectives Summary References Fly-ash particles. Neil Rose 319 12. Introduction A brief history Methods of extraction and enumeration Temporal distribution Spatial distribution Source apportionment The future Summary Acknowledgements References Part III: Stable Isotope Techniques 13. Application of stable isotope techniques to inorganic and biogenic carbonates. Emi Ito 351 Introduction Nomenclature and systematics of lake-water Mg/Ca and Sr/Ca ratios of lake-water of dissolved inorganic carbon (DIC) Carbonates in lake-sediments Mollusks Ostracodes Charaphytes Isotope analysis Preparation of carbonate samples for isotope analysis Conclusions Summary Acknowledgments References 14. Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications. Brent B. Wolfe, Thomas W. D. Edwards, Richard J. Elgood & Kristina R. M. Beuning 373 xi Introduction Stable isotope tracers in lake Historical development Methods Key criteria for paleohydrologic reconstruction Applications Future research directions Summary Acknowledgements References Nitrogen isotopes in palaeolimnology. Michael R. Talbot 15. 401 Introduction Nitrogen in lakes: forms and distribution Nitrogen isotopes Nitrogen isotope studies in palaeolimnology: sampling and measurement Some examples Closing remarks Summary Acknowledgments References Glossary, acronyms and abbreviations 441 Index 493 xiii PREFACE The explosive growth of paleolimnology over the past two decades has provided impetus for the publication of this series of monographs detailing the numerous advances and new techniques being applied to the interpretation of lake histories. This is the second volume in the series and deals mainly with physical and geochemical analytical techniques.




Tracking Environmental Change Using Lake Sediments


Book Description

Theory Instrumentation NIR analysis of sediment samples Uses of NIRS in palaeolimnology Future perspectives Summary References Fly-ash particles. Neil Rose 319 12. Introduction A brief history Methods of extraction and enumeration Temporal distribution Spatial distribution Source apportionment The future Summary Acknowledgements References Part III: Stable Isotope Techniques 13. Application of stable isotope techniques to inorganic and biogenic carbonates. Emi Ito 351 Introduction Nomenclature and systematics of lake-water Mg/Ca and Sr/Ca ratios of lake-water of dissolved inorganic carbon (DIC) Carbonates in lake-sediments Mollusks Ostracodes Charaphytes Isotope analysis Preparation of carbonate samples for isotope analysis Conclusions Summary Acknowledgments References 14. Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications. Brent B. Wolfe, Thomas W. D. Edwards, Richard J. Elgood & Kristina R. M. Beuning 373 xi Introduction Stable isotope tracers in lake Historical development Methods Key criteria for paleohydrologic reconstruction Applications Future research directions Summary Acknowledgements References Nitrogen isotopes in palaeolimnology. Michael R. Talbot 15. 401 Introduction Nitrogen in lakes: forms and distribution Nitrogen isotopes Nitrogen isotope studies in palaeolimnology: sampling and measurement Some examples Closing remarks Summary Acknowledgments References Glossary, acronyms and abbreviations 441 Index 493 xiii PREFACE The explosive growth of paleolimnology over the past two decades has provided impetus for the publication of this series of monographs detailing the numerous advances and new techniques being applied to the interpretation of lake histories. This is the second volume in the series and deals mainly with physical and geochemical analytical techniques.




Stable Isotope Ecology


Book Description

A solid introduction to stable isotopes that can also be used as an instructive review for more experienced researchers and professionals. The book approaches the use of isotopes from the perspective of ecological and biological research, but its concepts can be applied within other disciplines. A novel, step-by-step spreadsheet modeling approach is also presented for circulating tracers in any ecological system, including any favorite system an ecologist might dream up while sitting at a computer. The author’s humorous and lighthearted style painlessly imparts the principles of isotope ecology. The online material contains color illustrations, spreadsheet models, technical appendices, and problems and answers.