Gyrodynamics and Its Engineering Applications


Book Description

Gyrodynamics and Its Engineering Applications deals with the engineering applications of gyrodynamics in a manner that stresses the physical concepts. Topics covered range from the kinematics of rigid bodies to frames of reference, along with moments and products of inertia. Gyro-verticals and the gyrodynamics of machines are also considered. Comprised of 16 chapters, this book begins with a historical background on gyroscopes and an introduction to vectors, the kinematics of a particle, and rotating systems. The emphasis is on certain fundamental ideas governing the movement of bodies in three dimensions. Motion with respect to moving axes is discussed in detail, with particular attention to the intangible Coriolis acceleration. Subsequent chapters focus on the inertial characteristics of bodies and certain dynamical theorems; the motion of a free body and of a symmetrical gyroscope under gravity; gyroscopic vibration absorbers and stabilizers; the gyro-compass; suspensions for gyroscopes; gyro-verticals; and rate and integrating gyroscopes. The book also discusses inertial navigation as well as the whirling of shafts and aircraft gyrodynamics. This monograph is intended primarily for engineers, but should also prove valuable to university teachers, research workers, and those who encounter gyroscopic problems.







Principles of Dynamics


Book Description

Principles of Dynamics




Mechanics Today


Book Description

Mechanics Today, Volume 3 provides the advances in the fields of solid and fluid mechanics and applied mathematics. This volume is divided into six chapters that discuss the fundamentals and analytical and experimental results of dynamic behavior of linear and nonlinear systems. Chapter I provides a formulation of the effective stiffness theory with equations of motion and boundary conditions presented for the case of plain strain motion. Chapter II summarizes some of the analytical results that have been obtained in an effort to improve understanding of elastodynamic fracture processes. Chapter III presents the matrix difference equations used to formulate problems related to random vibration of periodic and almost periodic structures, taking advantage of the identical construction of the interconnecting units. Chapter IV describes a basic approach to the Oseen problem through the use of integral representations of the velocity and pressure fields. Chapter V deals with an analysis of nonlinear gyroscopic systems and the motions of high-order nongyroscopic systems. Chapter VI focuses on the application of the WKB perturbation method in the study of static deformation, vibration, wave propagation, and instability of elastic bodies. This volume is of great value to solid and fluid mechanics specialists and also to non-specialists with sufficient background of the field.




Engineering Dynamics


Book Description

A modern vector oriented treatment of classical dynamics and its application to engineering problems.




Advanced Engineering Dynamics


Book Description

A clear exposition of the dynamics of mechanical systems from an engineering perspective.







Electromechanics and MEMS


Book Description

A comprehensive MEMS textbook, with worked examples and numerous homework problems.




Intermediate Dynamics for Engineers


Book Description

Suitable for both senior-level and first-year graduate courses, this fully revised edition provides a unique and systematic treatment of engineering dynamics that covers Newton–Euler and Lagrangian approaches. New to this edition are: two completely revised chapters on the constraints on, and potential energies for, rigid bodies, and the dynamics of systems of particles and rigid bodies; clearer discussion on coordinate singularities and their relation to mass matrices and configuration manifolds; additional discussion of contravariant basis vectors and dual Euler basis vectors, as well as related works in robotics; improved coverage of navigation equations; inclusion of a 350-page solutions manual for instructors, available online; a fully updated reference list. Numerous structured examples, discussion of various applications, and exercises covering a wide range of topics are included throughout, and source code for exercises, and simulations of systems are available online.




Sensors for Mobile Robots


Book Description

The author compiles everything a student or experienced developmental engineer needs to know about the supporting technologies associated with the rapidly evolving field of robotics.From the table of contents: Design Considerations * Dead Reckoning * Odometry Sensors * Doppler and Inertial Navigation * Typical Mobility Configurations * Tactile and