Book Description
Gyrodynamics and Its Engineering Applications deals with the engineering applications of gyrodynamics in a manner that stresses the physical concepts. Topics covered range from the kinematics of rigid bodies to frames of reference, along with moments and products of inertia. Gyro-verticals and the gyrodynamics of machines are also considered. Comprised of 16 chapters, this book begins with a historical background on gyroscopes and an introduction to vectors, the kinematics of a particle, and rotating systems. The emphasis is on certain fundamental ideas governing the movement of bodies in three dimensions. Motion with respect to moving axes is discussed in detail, with particular attention to the intangible Coriolis acceleration. Subsequent chapters focus on the inertial characteristics of bodies and certain dynamical theorems; the motion of a free body and of a symmetrical gyroscope under gravity; gyroscopic vibration absorbers and stabilizers; the gyro-compass; suspensions for gyroscopes; gyro-verticals; and rate and integrating gyroscopes. The book also discusses inertial navigation as well as the whirling of shafts and aircraft gyrodynamics. This monograph is intended primarily for engineers, but should also prove valuable to university teachers, research workers, and those who encounter gyroscopic problems.