Hacking Discrete Math With Python 3


Book Description

Elementary discrete math for undergraduate computer science or computer engineering students. Covers basic topics including mathematical logic, direct proof, proof by contradiction, proof by contraposition, counter-example, induction, structural induction, elementary number theory, division, sets, sequences, functions, cardinality, counting, recurrence, recursion, and graph theory. Examples are given in Python 3.




Scientific Computation


Book Description

This is a book about hacking, but not just any kind of hacking. It is about mathematical hacking. If you like math and want to use computers to solve math problems, this book is for you. Scientific Computation: Python 3 Hacking for Math Junkies gives an introduction to hacking in Python for students and mathematical scientists. No previous coding experience is needed. This new edition has been updated to cover Python version 3. Computational applications are selected from many mathematical sub-disciplines. Examples include random numbers, statistics, finding roots, interpolation, linear and logistic regression, numerical solution of initial value problems, discrete systems, fractals, principal component analysis, singular value decomposition, clustering, image analysis, and satellite orbits. Over 300 exercises and projects are included for students. All code examples in the book are available for download from a companion website. The book is available in both print and electronic versions.




Scientific Computation


Book Description

"This book is designed to help math junkies -- anyone who likes math, studies math, or uses math in their daily life -- learn about computation. The emphasis is on algorithms. It is appropriate for students with no prior programming experience as well as professional scientists. Topics covered include Python expressions, statements, types, lists, arrays, functions, classes, plotting, list comprehension, recursion, linear systems, computational geometry, root finding, interpolation, polynomial least squares, discrete systems, differential equations, principal component analysis, fractals and chaos."--Cover.




The Discrete Math Workbook


Book Description

This practically-focused study guide introduces the fundamentals of discrete mathematics through an extensive set of classroom-tested problems. Each chapter presents a concise introduction to the relevant theory, followed by a detailed account of common challenges and methods for overcoming these. The reader is then encouraged to practice solving such problems for themselves, by tackling a varied selection of questions and assignments of different levels of complexity. This updated second edition now covers the design and analysis of algorithms using Python, and features more than 50 new problems, complete with solutions. Topics and features: provides a substantial collection of problems and examples of varying levels of difficulty, suitable for both laboratory practical training and self-study; offers detailed solutions to each problem, applying commonly-used methods and computational schemes; introduces the fundamentals of mathematical logic, the theory of algorithms, Boolean algebra, graph theory, sets, relations, functions, and combinatorics; presents more advanced material on the design and analysis of algorithms, including Turing machines, asymptotic analysis, and parallel algorithms; includes reference lists of trigonometric and finite summation formulae in an appendix, together with basic rules for differential and integral calculus. This hands-on workbook is an invaluable resource for undergraduate students of computer science, informatics, and electronic engineering. Suitable for use in a one- or two-semester course on discrete mathematics, the text emphasizes the skills required to develop and implement an algorithm in a specific programming language.




Hacking Math Class with Python


Book Description

A new kind of math book! Explore math topics from arithmetic to calculus by creating your own graphing and solving tools using Python. Create 2D and 3D graphics, harmonograph and spirograph designs, and fractals in this interactive and visual exploration of mathematics. "A great resource to play with Math and Python via the turtle module, solving equations numerically and 3D graphics via Pi3D." - Amit Saha, author of Doing Math With Python Imagine learning math and Python programming at the same time! You'll learn to use loops, variables, functions, conditionals and lists and apply them to all your math problems. No previous computer experience is required.




Hacking Python 3


Book Description

Have you seen the film "The Matrix Reloaded"? Well, if you had seen you would have probably recalled the scene where the character Trinity was seen using NMAP to hack the system of a power plant. This book is all about Scanning, Networking and Information Gathering with the help of Python programming language and by the way teaches you major steps of Ethical Hacking.Contents:# Epilogue# PART ONE: LEGAL SIDE, CYBER CRIME AND NETWORKING# Chapter 1 - Legal Side of Hacking# Chapter 2 - Examples of Crime## 2.1 - Black Money and Bitcoin## 2.2 The Great Cyber Robberies ## 2.3 - Biggest Data Heist## 2.4 - Internet: Battleground for Women# Chapter 3 - Hacking and Networking## 3.1 - What Does Network Mean?#PART TWO: PYTHON AND HACKING# Chapter 4 - Object in Python# Chapter 5 - Conditionals# Chapter 6 - Loops## 6.1 - While Loops## 6.2 - For Loops# Chapter 7 - Regular Expressions ## 7.1 - Using 're' Module## 7.2 - Reusing With Regular Expressions## 7.3 - Search With Regular Expressions# Chapter 8. - Exceptions, Errors# Chapter 9 - Functions## 9.1 - Return Values## 9.2 - Generate Functions## 9.3 - Lists of Arguments## 9.4 - Named Arguments# Chapter 10 - Classes## 10.1 - Object Oriented Methodology## 10.2 - Classes and Objects## 10.3 - Write a Game "Good VS Bad"## 10.4 - Primary Class and Object## 10.5 - Accessing Object Data## 10.6 - Polymorphism## 10.7 - Using Generators## 10.8 -Decorator# Chapter 11 - File Input, Output# Chapter 12 - Containers## 12.1 - Tuple and List Object## 12.2 - Dictionary Object# Chapter 13 - Module# Chapter 14 - Debugging, UnitTestChapter 15 - Socket and Networking# Chapter 16 - Importing Nmap Module# Chapter 17 - Nmap Network Scanner#PART THREE: PYTHON AND SECURITY ANALYSIS, RECONNAISSANCE SCANNER# Chapter 18 - TLD Scanner# Chapter 19 - Get IP Address# Chapter 20 - Whois Search# Chapter 21 - NMAP Port Scan# Chapter 22 - Robots Exclusion# Prologue







Discrete Mathematical Algorithm, and Data Structures


Book Description

Readers will learn discrete mathematical abstracts as well as its implementation in algorithm and data structures shown in various programming languages, such as C, C++, PHP, Java, C#, Python and Dart. This book combines two major components of Mathematics and Computer Science under one roof. Without the core conceptions and tools derived from discrete mathematics, one cannot understand the abstract or the general idea involving algorithm and data structures in Computer Science. The objects of data structures are basically objects of discrete mathematics. This book tries to bridge the gap between two major components of Mathematics and Computer Science.In any computer science course, studying discrete mathematics is essential, although they are taught separately, except in a few cases. Yet, a comprehensive book, combining these two major components, is hard to find out; not only that, it is almost impossible to understand one without the help of other.Hope, this book will fill the gap. Readers will learn discrete mathematical abstracts as well as its implementation in algorithm and data structures shown in various programming language, such as C++, Java, C#, Python and Dart.1. Introduction to the Discourse Is Discrete Mathematics enough to study Computer Science? A short Introduction to Discrete Mathematics What is Discrete Mathematics What is the relationship between Discrete Mathematics and Computer Science Introducing necessary conceptions 2. Introduction to Programming Language and Boolean Algebra Logic, Mathematics, and Programming Language Introduction to Boolean Algebra 3. De Morgan's Laws on Boolean Algebra, Logical Expression, and Algorithm Logical Expression Short Circuit Evaluation Syntax, Semantics and Conditional Execution Why we need Control Constructs Discrete Mathematical Notations and Algorithm 4. Data Structures in different Programming languages Mean, Median and Mode Array, the First Step to Data Structure Let us understand some Array features Set Theory, Probability and Array Skewed Mean, Maximized Median Complex Array Algorithm 5. Data Structures: Abstractions and Implementation How objects work with each other More Algorithm and Time Complexity Introducing Data Structures How Calculus and Linear Algebra are Related to this Discourse 6. Data Structures in Detail Frequently Asked Questions about Data Structures Abstract Data Type (ADT) Linear Data Structures Modeling of a Structure ArrayList to overcome limitations of Array ArrayList or LinkedList, which is faster? Collection Framework in programming languages Stack and Queue in Java Deque, a high-performance Abstract Data Type 7. Algorithm, Data Structure, Collection Framework and Standard Template Library (STL) Introducing Algorithm Library Different types of Algorithms Binary Tree and Data Structure Collection Framework in Java Discrete Mathematical Abstractions and Implementation through Java Collection Comparator, Comparable and Iterator Standard Template Library in C++ 8. Time Complexity Order of n, or O(n) Big O Notation 9. Set, Symmetric Difference and Propositional Logic Why Set is important in Data Structures How Symmetric Difference and Propositional Logic combine 10. Combinatorics and Counting, Permutation and Combinations Permutation and Combination What Next




Fundamentals of Discrete Math for Computer Science


Book Description

This clearly written textbook presents an accessible introduction to discrete mathematics for computer science students, offering the reader an enjoyable and stimulating path to improve their programming competence. The text empowers students to think critically, to be effective problem solvers, to integrate theory and practice, and to recognize the importance of abstraction. Its motivational and interactive style provokes a conversation with the reader through a questioning commentary, and supplies detailed walkthroughs of several algorithms. This updated and enhanced new edition also includes new material on directed graphs, and on drawing and coloring graphs, in addition to more than 100 new exercises (with solutions to selected exercises). Topics and features: assumes no prior mathematical knowledge, and discusses concepts in programming as and when they are needed; designed for both classroom use and self-study, presenting modular and self-contained chapters that follow ACM curriculum recommendations; describes mathematical processes in an algorithmic manner, often supported by a walkthrough demonstrating how the algorithm performs the desired task; includes an extensive set of exercises throughout the text, together with numerous examples, and shaded boxes highlighting key concepts; selects examples that demonstrate a practical use for the concept in question. Students embarking on the start of their studies of computer science will find this book to be an easy-to-understand and fun-to-read primer, ideal for use in a mathematics course taken concurrently with their first programming course.




Math Adventures with Python


Book Description

Learn math by getting creative with code! Use the Python programming language to transform learning high school-level math topics like algebra, geometry, trigonometry, and calculus! Math Adventures with Python will show you how to harness the power of programming to keep math relevant and fun. With the aid of the Python programming language, you'll learn how to visualize solutions to a range of math problems as you use code to explore key mathematical concepts like algebra, trigonometry, matrices, and cellular automata. Once you've learned the programming basics like loops and variables, you'll write your own programs to solve equations quickly, make cool things like an interactive rainbow grid, and automate tedious tasks like factoring numbers and finding square roots. You'll learn how to write functions to draw and manipulate shapes, create oscillating sine waves, and solve equations graphically. You'll also learn how to: - Draw and transform 2D and 3D graphics with matrices - Make colorful designs like the Mandelbrot and Julia sets with complex numbers - Use recursion to create fractals like the Koch snowflake and the Sierpinski triangle - Generate virtual sheep that graze on grass and multiply autonomously - Crack secret codes using genetic algorithms As you work through the book's numerous examples and increasingly challenging exercises, you'll code your own solutions, create beautiful visualizations, and see just how much more fun math can be!