Lattice QCD for Nuclear Physics


Book Description

With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included.




Hadronic Physics from Lattice QCD


Book Description

- Several of the authors give elementary introductions that lead to some duplication. This we believe is a positive feature since each author presents a different viewpoint emphasizing the particular topic of that chapter - The topics chosen are the closest Lattice QCD comes to more conventional particle and nuclear physics - The numerical results presented in the various chapters are most up-to-date




Hadronic Physics from Lattice QCD


Book Description

Particle and nuclear physicists frequently take results from Lattice QCD at their face value without probing into their reliability or sophistication. This attitude usually stems from a lack of knowledge of the field. The aim of the present volume is to rectify this by introducing in an elementary way several topics, which we believe are appropriate for, and of possible interest to, both particle and nuclear physicists who are non-experts in the field.




Hadron Physics


Book Description

Straddling the traditional disciplines of nuclear and particle physics, hadron physics is a vital and extremely active research area, as evidenced by a 2004 Nobel prize and new research facilities, such as that scheduled to open at CERN. Scientifically it is of vital importance in extrapolating our knowledge of quark-gluon physics at the sub-nucleon level to provide a wider perspective of strongly interacting hadrons, which make up the vast bulk of known matter in the Universe. Through detailed, pedagogical chapters contributed by key international experts, Hadron Physics maps out our contemporary knowledge of the subject. It covers both the theoretical and experimental aspects of hadron structure and properties along with a wide range of specific research topics, results, and applications. Providing a full picture of activity in the field, the book highlights three particular areas of current research: computational lattice hadron physics, the structure and dynamics of hadrons, and generalized parton distributions. It provides a solid introduction, includes background theory, and presents the current state of understanding of the subject.




Quantum Chromodynamics on the Lattice


Book Description

This introduction to quantum chromodynamics presents the basic concepts and calculations in a clear and didactic style accessible to those new to the field. Readers will find useful methods for obtaining numerical results, including pure gauge theory and quenched spectroscopy.




The QCD Vacuum, Hadrons and Superdense Matter


Book Description

This invaluable book is an extensive set of lecture notes on various aspects of non-perturbative quantum chromodynamics ? the fundamental theory of strong interaction on which nuclear and hadronic physics is based.The original edition of the book, written in the mid-1980's, had more of a review style. In the second edition the outline remains the same, but the text has been completely rewritten, and extended. Apart from the new developments over the years, this edition has benefited from several graduate courses which the author has taught at Stony Brook during the last decade. The text is now complemented by exercises and has a total of about 1000 references to major works, arranged by subject.Three major issues ? the structure of the QCD vacuum, the structure of hadrons, and the physics of hot/dense matter ? are addressed as physics problems. Therefore, when discussing any specific subject, the book attempts to incorporate (1) all the solid theoretical results, (2) experimental information, and (3) results of numerical (lattice) simulations, which are playing an increasing role in quantum field theory in general, and the development of QCD in particular.The QCD Vacuum, Hadrons and Superdense Matter takes the reader from the first encounter with the subject to the front line of research, as quickly as possible.




Functional Analysis and Optimization Methods in Hadron Physics


Book Description

This book begins with a brief historical review of the early applications of standard dispersion relations in particle physics. It then presents the modern perspective within the Standard Model, emphasizing the relation of analyticity together with alternative tools applied to strong interactions, such as perturbative and lattice quantum chromodynamics (QCD), as well as chiral perturbation theory. The core of the book argues that, in order to improve the prediction of specific hadronic observables, it is often necessary to resort to methods of complex analysis more sophisticated than the simple Cauchy integral. Accordingly, a separate mathematical chapter is devoted to solving several functional analysis optimization problems. Their applications to physical amplitudes and form factors are discussed in the following chapters, which also demonstrate how to merge the analytic approach with statistical analysis tools. Given its scope, the book offers a valuable guide for researchers working in precision hadronic physics, as well as graduate students who are new to the field.




Perturbative Quantum Chromodynamics


Book Description

This book will be of great interest to advanced students and researchers in the area of high energy theoretical physics. Being the most complete and updated review volume on Perturbative QCD, it serves as an extremely useful textbook or reference book. Some of the reviews in this volume are the best that have been written on the subject anywhere.




Quark--Gluon Plasma 3


Book Description

Annotation. Text reviews the major topics in Quark-Gluon Plasma, including: the QCD phase diagram, the transition temperature, equation of state, heavy quark free energies, and thermal modifications of hadron properties. Includes index, references, and appendix. For researchers and practitioners.




The Anomalous Magnetic Moment of the Muon


Book Description

This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations.