Hamiltonian Dynamics - Theory and Applications


Book Description

This volume compiles three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants, and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.




Hamiltonian Dynamical Systems and Applications


Book Description

This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.







Essentials of Hamiltonian Dynamics


Book Description

Classical dynamics is one of the cornerstones of advanced education in physics and applied mathematics, with applications across engineering, chemistry and biology. In this book, the author uses a concise and pedagogical style to cover all the topics necessary for a graduate-level course in dynamics based on Hamiltonian methods. Readers are introduced to the impressive advances in the field during the second half of the twentieth century, including KAM theory and deterministic chaos. Essential to these developments are some exciting ideas from modern mathematics, which are introduced carefully and selectively. Core concepts and techniques are discussed, together with numerous concrete examples to illustrate key principles. A special feature of the book is the use of computer software to investigate complex dynamical systems, both analytically and numerically. This text is ideal for graduate students and advanced undergraduates who are already familiar with the Newtonian and Lagrangian treatments of classical mechanics. The book is well suited to a one-semester course, but is easily adapted to a more concentrated format of one-quarter or a trimester. A solutions manual and introduction to Mathematica® are available online at www.cambridge.org/Lowenstein.




Introduction to Hamiltonian Dynamical Systems and the N-Body Problem


Book Description

This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)




Lagrangian and Hamiltonian Dynamics


Book Description

The book introduces classical mechanics. It does so in an informal style with numerous fresh, modern and inter-disciplinary applications assuming no prior knowledge of the necessary mathematics. The book provides a comprehensive and self-contained treatment of the subject matter up to the forefront of research in multiple areas.




Construction of Mappings for Hamiltonian Systems and Their Applications


Book Description

Based on the method of canonical transformation of variables and the classical perturbation theory, this innovative book treats the systematic theory of symplectic mappings for Hamiltonian systems and its application to the study of the dynamics and chaos of various physical problems described by Hamiltonian systems. It develops a new, mathematically-rigorous method to construct symplectic mappings which replaces the dynamics of continuous Hamiltonian systems by the discrete ones. Applications of the mapping methods encompass the chaos theory in non-twist and non-smooth dynamical systems, the structure and chaotic transport in the stochastic layer, the magnetic field lines in magnetically confinement devices of plasmas, ray dynamics in waveguides, etc. The book is intended for postgraduate students and researches, physicists and astronomers working in the areas of plasma physics, hydrodynamics, celestial mechanics, dynamical astronomy, and accelerator physics. It should also be useful for applied mathematicians involved in analytical and numerical studies of dynamical systems.




Hamiltonian Dynamics


Book Description

This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems.As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity.As a monograph, the book deals with the advanced research topic of completely integrable dynamics, with both finitely and infinitely many degrees of freedom, including geometrical structures of solitonic wave equations.




The Hamiltonian Approach to Dynamic Economics


Book Description

The Hamiltonian Approach to Dynamic Economics focuses on the application of the Hamiltonian approach to dynamic economics and attempts to provide some unification of the theory of heterogeneous capital. Emphasis is placed on the stability of long-run steady-state equilibrium in models of heterogeneous capital accumulation. Generalizations of the Samuelson-Scheinkman approach are also given. Moreover, conditions are sought on the geometry of the Hamiltonian function (that is, on static technology) that suffice to preserve under (not necessarily small) perturbation the basic properties of the Hamiltonian dynamical system. Comprised of eight essays, this book begins with an introduction to Hamiltonian dynamics in economics, followed by a discussion on optimal steady states of n-sector growth models when utility is discounted. Optimal growth and decentralized or descriptive growth models in both continuous and discrete time are treated as applications of Hamiltonian dynamics. Theproblem of optimal growth with zero discounting is considered, with emphasis on a steepness condition on the Hamiltonian function. The general problem of decentralized growth with instantaneously adjusted expectations about price changes is also analyzed, along with the global asymptotic stability of optimal control systems with applications to the theory of economic growth. This monograph will be of value to mathematicians and economists.