Hamiltonian Lie Algebroids


Book Description

View the abstract.




General Theory of Lie Groupoids and Lie Algebroids


Book Description

This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry andgeneral connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles. As such, this book will be of great interest to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids.




Integrable Systems on Lie Algebras and Symmetric Spaces


Book Description

Second volume in the series, translated from the Russian, sets out new regular methods for realizing Hamilton's canonical equations in Lie algebras and symmetric spaces. Begins by constructing the algebraic embeddings in Lie algebras of Hamiltonian systems, going on to present effective methods for constructing complete sets of functions in involution on orbits of coadjoint representations of Lie groups. Ends with the proof of the full integrability of a wide range of many- parameter families of Hamiltonian systems that allow algebraicization. Annotation copyrighted by Book News, Inc., Portland, OR







Poisson Structures


Book Description

Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.​




Geometric Models for Noncommutative Algebras


Book Description

The volume is based on a course, ``Geometric Models for Noncommutative Algebras'' taught by Professor Weinstein at Berkeley. Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, for example, the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this work, the authors discuss several types of geometric objects (in the usual sense of sets with structure) that are closely related to noncommutative algebras. Central to the discussion are symplectic and Poisson manifolds, which arise when noncommutative algebras are obtained by deforming commutative algebras. The authors also give a detailed study of groupoids (whose role in noncommutative geometry has been stressed by Connes) as well as of Lie algebroids, the infinitesimal approximations to differentiable groupoids. Featured are many interesting examples, applications, and exercises. The book starts with basic definitions and builds to (still) open questions. It is suitable for use as a graduate text. An extensive bibliography and index are included.




Lagrangian Lie Subalgebroids of the Canonical Symplectic Lie Algebroid


Book Description

It is well-known that the Poisson reduction of a hamiltonian system on the cotangent bundle of a manifold produces a hamiltonian system on a linear Poisson manifold. On the other hand, linear Poisson structures on a vector bundle $Â*$ may be described in terms of the canonical symplectic section of ${\mathcal T}̂AÂ*$, the $A$-tangent bundle to $Â*$. In fact, ${\mathcal T}̂AÂ*$ is a canonical symplectic Lie algebroid over the linear Poisson manifold $Â*$. In this master thesis, we discuss Lagrangian Lie subalgebroids of ${\mathcal T}̂AÂ*$. The base space of a Lagrangian Lie subalgebroid $L$ turns out to be a coisotropic submanifold $C$ of $Â*$. Thus, first we describe the local nature of $C$ when it is an affine subbundle of $Â*$ and then we describe the local nature of $L$. We expect that these results may be applied, in a future work, in the geometric formulation of Hamilton-Jacobi theory for reduced hamiltonian systems.




Lie Groupoids and Lie Algebroids in Differential Geometry


Book Description

This book provides a striking synthesis of the standard theory of connections in principal bundles and the Lie theory of Lie groupoids. The concept of Lie groupoid is a little-known formulation of the concept of principal bundle and corresponding to the Lie algebra of a Lie group is the concept of Lie algebroid: in principal bundle terms this is the Atiyah sequence. The author's viewpoint is that certain deep problems in connection theory are best addressed by groupoid and Lie algebroid methods. After preliminary chapters on topological groupoids, the author gives the first unified and detailed account of the theory of Lie groupoids and Lie algebroids. He then applies this theory to the cohomology of Lie algebroids, re-interpreting connection theory in cohomological terms, and giving criteria for the existence of (not necessarily Riemannian) connections with prescribed curvature form. This material, presented in the last two chapters, is work of the author published here for the first time. This book will be of interest to differential geometers working in general connection theory and to researchers in theoretical physics and other fields who make use of connection theory.




Hamiltonian Reduction by Stages


Book Description

This volume provides a detailed account of the theory of symplectic reduction by stages, along with numerous illustrations of the theory. It gives special emphasis to group extensions, including a detailed discussion of the Euclidean group, the oscillator group, the Bott-Virasoro group and other groups of matrices. The volume also provides ample background theory on symplectic reduction and cotangent bundle reduction.




Differential Galois Theory and Non-Integrability of Hamiltonian Systems


Book Description

This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Hénon-Heiles system, etc. The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simó, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed. - - - The book is an excellent introduction to non-integrability methods in Hamiltonian mechanics and brings the reader to the forefront of research in the area. The inclusion of a large number of worked-out examples, many of wide applied interest, is commendable. There are many historical references, and an extensive bibliography. (Mathematical Reviews) For readers already prepared in the two prerequisite subjects [differential Galois theory and Hamiltonian dynamical systems], the author has provided a logically accessible account of a remarkable interaction between differential algebra and dynamics. (Zentralblatt MATH)