Handbook of Algal Science, Technology and Medicine


Book Description

Handbook of Algal Science, Microbiology, Technology and Medicine provides a concise introduction to the science, biology, technology and medical use of algae that is structured on the major research fronts of the last four decades, such as algal structures and properties, algal biomedicine, algal genomics, algal toxicology, and algal bioremediation, algal photosystems, algal ecology, algal bioenergy and biofuels. It also covers algal production for biomedicine, algal biomaterials, and algal medicinal foods within these primary sections. All chapters are authored by the leading researchers in their respective research fields. Our society currently faces insurmountable challenges in the areas of biomedicine and energy in the face of increasing global population and diminishing natural resources as well as the growing environmental and economic concerns, such as global warming, greenhouse gas emissions and climate change. Algae offer a way to deal with these challenges and concerns for both sustainable and environment friendly bioenergy production and in biomedicine through the development of crucial biotechnology. Provides an essential interdisciplinary introduction and handbook for all the stakeholders engaged in science, technology and medicine of algae Covers the major research streams of the last four decades, ranging from algal structures, to algal biomedicine and algal bioremediation Fills a significant market opening for an interdisciplinary handbook on algal science, technology and medicine




Handbook of Algal Technologies and Phytochemicals


Book Description

Key features: The most comprehensive resource available on the biodiversity of algal species, their industrial production processes and their use for human consumption in food, health and varied applications. Emphasis on basic and applied research, addressing aspects of scale-up for commercial exploitation for the development of novel phytochemicals (phytochemicals from algae). Addresses the underexplored and underutilized potential of chemicals from marine sources for health benefits. Each chapter, written by expert contributors from around the world, includes Summary Points, Figures and Tables, as well as up-to-date references. The first book in this two-volume set explores the diversity of algal constituents for health and disease applications. The commercial value of chemicals of value to food and health is about $6 billion annually, of which 30 percent relates to micro and macro algal metabolites and products for health food applications. This comprenhensive volume looks in detail at algal genomics and metabolomics as well as mass production of microalgae. As a whole, the two-volume set covers all micro and macro algal forms and their traditional uses; their constituents which are of value for food, feed, specialty chemicals, bioactive compounds for novel applications, and bioenergy molecules. Bio-business and the market share of algae-based products are also dealt with, providing global perspectives.




Evaluation and Utilization of Bioethanol Fuels. I.


Book Description

This book aims to inform readers about the recent developments in the evaluation and utilization of bioethanol fuels. It covers the evaluation and utilization of bioethanol fuels in general, gasoline fuels, nanotechnology applications in bioethanol fuels, utilization of bioethanol fuels in transport engines, evaluation of bioethanol fuels, utilization of bioethanol fuels in general, and development and utilization of bioethanol fuel sensors. This book is the fifth volume in the Handbook of Bioethanol Fuels (Six-Volume Set). It indicates that research on the evaluation and utilization of bioethanol fuels has intensified in recent years to become a major part of bioenergy and biofuels research together primarily with biodiesel, biohydrogen, and biogas research as a sustainable alternative to crude oil-based gasoline and petrodiesel fuels as well as natural gas and syngas. This book is a valuable resource for stakeholders primarily in the research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, and molecular biology, plant sciences, water resources, economics, business and management, transportation science and technology, ecology, public, environmental and occupational health, social sciences, toxicology, multidisciplinary sciences, and humanities, among others.




Evaluation and Utilization of Bioethanol Fuels. II.


Book Description

Presents the direct use of bioethanol fuels in electric cars and the indirect use of bioethanol fuels in electric cars in the form of biohydrogen produced from bioethanol fuels Discusses bioethanol fuel-based bioelectricity production, bioethanol fuel-based biochemical and biohydrocarbon production Discusses direct bioethanol fuel cells, bioethanol fuel electrooxidation, catalysts for bioethanol fuel oxidation, and nanotechnology applications in fuel cells Includes case studies of bioethanol fuel-based biochemical and biohydrocarbon production, nanosensors, ZnO-based nanosensors, and SnO2-based nanosensors




Bioethanol Fuel Production Processes. I


Book Description

This book presents research on biomass pretreatments, which are a fundamental part of bioethanol fuel production to make biomass more accessible. This book also includes an introductory section on the bioethanol fuels. Bioethanol Fuel Production Processes. I: Biomass Pretreatments is the first volume in the Handbook of Bioethanol Fuels (Six-Volume Set). The primary pretreatments at the macro level are the biological chemical, hydrothermal, and mechanical pretreatments of the biomass. It also has an introductory section on the biomass pretreatments at large for bioethanol fuel production. The major pretreatments at the micro level are the enzymatic and fungal pretreatments of the biomass as the biological pretreatments, acid, alkaline, ionic liquid, and organic solvent pretreatment pretreatments of the biomass as the chemical pretreatments, steam explosion and liquid hot water pretreatments of the biomass as the hydrothermal pretreatments, and milling, ultrasonic, and microwave pretreatments of the biomass as the mechanical pretreatments. The first volume also indicates that a wide range of pretreatments stand alone or in combination with each other fractionate the biomass to its constituents of cellulose, lignin, and hemicellulose and improve both sugar and bioethanol fuel yield, making this bioethanol fuel more competitive in relation to crude oil- and natural gas-based fossil fuels. This first volume is a valuable resource for the stakeholders primarily in the research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, molecular biology, plant sciences, water resources, economics, business, management, transportation science and technology, ecology, public, environmental and occupational health, social sciences, toxicology, multidisciplinary sciences, and humanities among others.




Feedstock-based Bioethanol Fuels. II. Waste Feedstocks


Book Description

This book provides an overview of research on the production of bioethanol fuels from waste feedstocks such as second-generation residual sugar and starch feedstocks, food waste, industrial waste, urban waste, forestry waste, and lignocellulosic biomass at large with 17 chapters. In this context, there are eight sections where the first two chapters cover the production of bioethanol fuels from waste feedstocks at large. This book is the fourth volume in the Handbook of Bioethanol Fuels (Six-Volume Set). It shows that pretreatments and hydrolysis of the waste feedstocks, fermentation of hydrolysates, and separation and distillation of bioethanol fuels are the fundamental processes for bioethanol fuel production from these waste feedstocks. This book is a valuable resource for stakeholders primarily in research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, molecular biology, plant sciences, water resources, economics, business and management, transportation science and technology, ecology, public, environmental and occupational health, social sciences, toxicology, multi-disciplinary sciences, and humanities among others.




Feedstock-based Bioethanol Fuels. I. Non-Waste Feedstocks


Book Description

This book aims to inform readers about the recent developments in production, evaluation, and utilization of bioethanol fuels from non-waste feedstocks. It covers the production of bioethanol fuels from first generation starch feedstocks and sugar feedstocks, grass biomass, wood biomass, cellulose, biosyngas, and third generation algae. In this context, there are nine key sections where the first four chapters cover the production of bioethanol fuels from feedstocks at large and non-waste feedstocks. This book shows that pretreatments and hydrolysis of the non-waste feedstocks, fermentation of hydrolysates, and separation and distillation of bioethanol fuels are the fundamental processes for bioethanol fuel production from these non-waste feedstocks with the exception of the biosyngas feedstocks. This book is a valuable resource for the stakeholders primarily in the research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, molecular biology, plant sciences, water resources, economics, business and management, transportation science and technology, ecology, public, environmental, and occupational health, social sciences, toxicology, multidisciplinary sciences, and humanities among others




Bioethanol Fuel Production Processes. II


Book Description

This book provides an overview of the research on production processes for bioethanol fuels in general, hydrolysis of the pretreated biomass for bioethanol production, microbial fermentation of hydrolysates and substrates with yeasts for bioethanol production, and separation and distillation of bioethanol fuels from the fermentation broth, complementing the research on biomass pretreatments presented in the first volume. It presents an overview of the research on biomass hydrolysis in general, wood hydrolysis, straw hydrolysis, and cellulose hydrolysis for bioethanol fuel production in the first section for biomass hydrolysis. It provides an overview of the research on microbial hydrolysate fermentation for bioethanol production in general, alternative fermentation processes for bioethanol fuel production such as simultaneous saccharification and fermentation (SSF) and consolidated biomass processing (CBP) compared with the separate hydrolysis and fermentation (SHF) process, metabolic engineering of microorganisms and substrates for bioethanol fuel production, and utilization of Saccharomyces cerevisiae for microbial fermentation of hydrolysates for bioethanol fuel production in the second section for hydrolysate fermentation. It provides an overview of the research on the bioethanol fuel separation from the fermentation broth in the last section. This book is a valuable resource for the stakeholders primarily in the research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, molecular biology, plant sciences, water resources, economics, business, management, transportations science and technology, ecology, public, environmental and occupational health, social sciences, toxicology, multidisciplinary sciences, and humanities among others.




Valorization of Microalgal Biomass and Wastewater Treatment


Book Description

Valorization of Microalgal Biomass and Wastewater Treatment provides tools, techniques, data and case studies to demonstrate the use of algal biomass in the production of valuable products like biofuels, food and fertilizers, etc. Valorization has several advantages over conventional bioremediation processes as it helps reduce the costs of bioprocesses. Examples of several successfully commercialized technologies are provided throughout the book, giving insights into developing potential processes for valorization of different biomasses. Wastewater treatment by microalgae generates the biomass, which could be utilized for developing various other products, such as fertilizers and biofuels. This book will equip researchers and policymakers in the energy sector with the scientific methodology and metrics needed to develop strategies for a viable transition in the energy sector. It will be a key resource for students, researchers and practitioners seeking to deepen their knowledge on energy planning, wastewater treatment and current and future trends. - Presents a detailed coverage of the tools and techniques for valarization of algal biomass - Includes detailed updates on the Life Cycle Assessment of microalgal wastewater treatment and biomass valorization, its challenges, prospectus, regulations and policies - Provides case studies of real-life examples for researchers to replicate and learn from