Handbook of Biodegradable Polymers


Book Description

A comprehensive overview of biodegradable polymers, covering everything from synthesis, characterization, and degradation mechanisms while also introducing useful applications, such as drug delivery systems and biomaterial-based regenerative therapies. An introductory section deals with such fundamentals as basic chemical reactions during degradation, the complexity of biological environments and experimental methods for monitoring degradation processes. The result is a reliable reference source for those wanting to learn more about this important class of polymer materials, as well as scientists in the field seeking a deeper insight.







Handbook of Biodegradable Polymers


Book Description

This handbook covers characteristics, processability and application areas of biodegradable polymers, with key polymer family groups discussed. It explores the role of biodegradable polymers in different waste management practices including anaerobic digestion, and considers topics such as the different types of biorefineries for renewable monomers used in producing the building blocks for biodegradable polymers.










Handbook of Biopolymers and Biodegradable Plastics


Book Description

Biopolymers and Biodegradable Plastics are a hot issue across the Plastics industry, and for many of the industry sectors that use plastic, from packaging to medical devices and from the construction indusry to the automotive sector. This book brings together a number of key biopolymer and biodegradable plastics topics in one place for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers. Topics covered include preparation, fabrication, applications and recycling (including biodegradability and compostability). Applications in key areas such as films, coatings controlled release and tissue engineering are discussed. Dr Ebnesajjad provides readers with an in-depth reference for the plastics industry – material suppliers and processors, bio-polymer producers, bio-polymer processors and fabricators – and for industry sectors utilizing biopolymers – automotive, packaging, construction, wind turbine manufacturers, film manufacturers, adhesive and coating industries, medical device manufacturers, biomedical engineers, and the recycling industry. Essential information and practical guidance for engineers and scientists working with bioplastics, or evaluating a migration to bioplastics. Includes key published material on biopolymers, updated specifically for this Handbook, and new material including coverage of PLA and Tissue Engineering Scaffolds. Coverage of materials and applications together in one handbook enables engineers and scientists to make informed design decisions.




Handbook of Biodegradable Polymers


Book Description

A comprehensive overview of biodegradable polymers, covering everything from synthesis, characterization, and degradation mechanisms while also introducing useful applications, such as drug delivery systems and biomaterial-based regenerative therapies. An introductory section deals with such fundamentals as basic chemical reactions during degradation, the complexity of biological environments and experimental methods for monitoring degradation processes. The result is a reliable reference source for those wanting to learn more about this important class of polymer materials, as well as scientists in the field seeking a deeper insight.




Handbook of Polymer Applications in Medicine and Medical Devices


Book Description

The design and development of tissue-engineered products has benefited from many years of clinical utilization of a wide range of biodegradable polymers. Newly developed biodegradable polymers and modifications of previously developed biodegradable polymers have enhanced the tools available for creating clinically important tissue-engineering applications. Insights gained from studies of cell-matrix interactions, cell-cell signaling, and organization of cellular components, are placing increased demands on medical implants to interact with the patient’s tissue in a more biologically appropriate fashion. Whereas in the twentieth century biocompatibility was largely equated with eliciting no harmful response, the biomaterials of the twenty first century will have to elicit tissue responses that support healing or regeneration of the patient’s own tissue. This chapter surveys the universe of those biodegradable polymers that may be useful in the development of medical implants and tissue-engineered products. Here, we distinguish between biologically derived polymers and synthetic polymers. The materials are described in terms of their chemical composition, breakdown products, mechanism of breakdown, mechanical properties, and clinical limitations. Also discussed are product design considerations in processing of biomaterials into a final form (e.g., gel, membrane, matrix) that will effect the desired tissue response.




Handbook of Biodegradable Polymers


Book Description

Handbook of Biodegradable Polymers, the seventh volume in the Drug Delivery and Targeting book series, provides a source manual for synthetic procedures, properties and applications of bioerodible polymers. The authors describe widely available materials such as polyactides, collagen and gelatin, as well as polymers of emerging importance, such as the genetically-engineered and elastin-based polymers which are either proprietary or in early stages of development. Section I addresses synthetic absorbable polymers, and Section 2 profiles natural, semi-synthetic and biosynthetic polymers. Section 3 discusses the surface characterization of degradable polymers, the modeling of biodegradation and non-medical polymers. This book is ideal for researchers from academia and industry as well as chemists, pharmacists and physicians who deal with biopolymers, drug delivery and targeting, bioengineering and implantable devices.




Handbook of Polymers in Medicine


Book Description

Handbook of Polymers in Medicine combines core concepts and advanced research on polymers, providing a better understanding of this class of materials in medicine. The book covers all aspects of medical polymers from characteristics and biocompatibility, to the diverse array of applications in medicine. Chapters cover an introduction to polymers in medicine and the challenges associated with biocompatibility in human tissue, polyurethane and supramolecular polymers and their specific applications in medicine, from tissue regeneration to orthopedic surgery and cancer therapeutics. This book offers an interdisciplinary approach that will appeal to researchers in a range of disciplines, including biomedical engineering, materials science, chemistry, pharmacology and translational medicine. The book will also make a useful reference for clinicians and those in medical fields who are interested in materials for medical applications, as well as R&D groups involved in medical device design. Systematically covers individual polymer classes, from characteristics and biocompatibility to applications in biomedicine Covers a broad range of applications in medicine, such as cardiac tissue engineering, targeted drug delivery, dentistry, and more Provides an interdisciplinary review of polymers in medicine, allowing advanced students and experienced researchers in a range of biomedical and clinical fields to learn more about this fast-evolving area