Handbook of Biomechatronics


Book Description

Handbook of Biomechatronics provides an introduction to biomechatronic design as well as in-depth explanations of some of the most exciting and ground-breaking biomechatronic devices in the world today. Edited by Dr. Jacob Segil and written by a team of biomechatronics experts, the work begins with broad topics concerning biomechatronic design and components, followed by more detailed discussions of specific biomechatronic devices spanning many disciplines. This book is structured into three main parts: biomechatronic design, biomechatronic components, and biomechatronic devices. The biomechatronic design chapter discusses the history of biomechatronics, conceptual design theory, biomechatronic design methods, and design tools. The next section discusses the technologies involved in the following components: sensors, actuators, and control systems. The biomechatronic devices chapters contains distinct examples of biomechatronic devices spanning visual prostheses to brain-machine interfaces. Each chapter presents the development of these biomechatronic devices followed by an in-depth discussion of the current state of the art The only book that covers biomechatronic design, components, and devices in one comprehensive text Accessible for readers in multiple areas of study, such as bioengineering, computer science, electrical engineering, mechanical engineering, and chemical engineering Includes the most recent and groundbreaking advances and work in the biomechatronics field through industry and academic contributors




Biomechatronics in Medicine and Healthcare


Book Description

This book presents experts’ insights into the emerging technologies and developments that are being or will be utilized in the medical profession to meet a variety of clinical challenges. It demonstrates the application of biomechatronics to provide better care and service. It also incorporates new and exciting multidisciplinary areas of research across the medical and engineering fields, such as robotic therapeutic training system for stroke rehabilitation, exoskeletons for daily activities on persons with disability, functional electrical stimulation, and wireless active capsule endoscopy. Each chapter provides substantial background material relevant to the particular subject.




Springer Handbook of Robotics


Book Description

With the science of robotics undergoing a major transformation just now, Springer’s new, authoritative handbook on the subject couldn’t have come at a better time. Having broken free from its origins in industry, robotics has been rapidly expanding into the challenging terrain of unstructured environments. Unlike other handbooks that focus on industrial applications, the Springer Handbook of Robotics incorporates these new developments. Just like all Springer Handbooks, it is utterly comprehensive, edited by internationally renowned experts, and replete with contributions from leading researchers from around the world. The handbook is an ideal resource for robotics experts but also for people new to this expanding field.




Essentials of Mechatronics


Book Description

Learn how to study, analyze, select, and design a successful mechatronic product This innovative, cutting-edge publication presents the essential nature of mechatronics, a field at the crossroads of information technology and mechanical and electrical engineering. Readers learn how to blend mechanisms, electronics, sensors, control strategies, and software into a functional design. Given the breadth that the field of mechatronics draws upon, this publication provides a critical service to readers by paring down the topics to the most essential ones. A common thread throughout the publication is tailoring performance to the actual needs of the user, rather than designing "by the book." Practical methods clarify engineering trade-offs needed to design and manufacture competitive state-of-the-art products and systems. Key features include: * Easy-to-construct set of laboratory experiments to give readers practice in controlling difficult systems using discrete-time algorithms * Essentials of control theory, concentrating on state-space and easily constructed simulations in JavaScript, including typical mechatronic systems with gross nonlinearities where linear methods give the "wrong answer" * Hot topics that include advances in the automotive, multimedia, robotics, defense, medical, and consumer industries * Author-provided Web site at www.EssMech.com offers additional resources, including videos, dynamic simulation examples, software tools, and downloads There are hundreds of choices involved in all but the simplest of mechatronic design tasks. Using this publication as a reference, electrical, mechanical, and computer designers and engineers can find the most efficient, cost-effective methods to transform their goals into successful commercial products. With its use of laboratory experiments, this publication is also recommended as a graduate-level textbook. Author Web site located at www.EssMech.com provides in-depth support material that includes links to simulations for modeling dynamic systems with real-time interactions, image processing examples, and 3D robot modeling software, enabling readers to "construct" and manipulate their own mechanism as well as other useful links.




Biomechatronics


Book Description

Biomechatronics is rapidly becoming one of the most influential and innovative research directions defining the 21st century. Biomechatronics will provide a complete and up-to-date account of this advanced subject at the university textbook level. Each chapter in this book will be co-authored by top industry experts in the corresponding subfield, and will be led by Professor Marko B. Popovic, researcher and educator at the forefront of advances in the biomechatronics field. Beginning with an introduction to the field and its historical background, this book will delve into the most groundbreaking and recent developments in biomechatronics, such as artificial organs and tissues, prosthetic limbs, orthotic systems, wearable systems for physical augmentation, physical therapy and rehabilitation, robotic surgery, and natural and synthetic sensors. The only biomechatronics textbook written especially for students at a university level Ideal for undergraduate and graduate students and researchers in the biomechatronics, biomechanics, robotics, and biomedical engineering fields Provides an overview of state-of-the-art science and technology of modern day biomechatronics, introduced by the leading experts in this fascinating field




Wearable Robots


Book Description

A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control. Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these. As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers: the mechanics of the wearable robot and it’s biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems; the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems; the study on the development of networks for wearable robotics. Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.




Handbook of Collective Robotics


Book Description

This book is devoted to mechatronic, chemical, bacteriological, biological, and hybrid systems, utilizing cooperative, networked, swarm, self-organizing, evolutionary and bio-inspired design principles and targeting underwater, ground, air, and space applications. It addresses issues such as open-ended evolution, self-replication, self-development, reliability, scalability, energy foraging, adaptivity, and artificial sociality. The book has been prepared by 52 authors from world-leading research groups in 14 countries. This book covers not only current but also future key technologies and is aimed at anyone who is interested in learning more about collective robotics and how it might affect our society.




The Mechatronics Handbook - 2 Volume Set


Book Description

The first comprehensive reference on mechatronics, The Mechatronics Handbook was quickly embraced as the gold standard in the field. From washing machines, to coffeemakers, to cell phones, to the ubiquitous PC in almost every household, what, these days, doesn’t take advantage of mechatronics in its design and function? In the scant five years since the initial publication of the handbook, the latest generation of smart products has made this even more obvious. Too much material to cover in a single volume Originally a single-volume reference, the handbook has grown along with the field. The need for easy access to new material on rapid changes in technology, especially in computers and software, has made the single volume format unwieldy. The second edition is offered as two easily digestible books, making the material not only more accessible, but also more focused. Completely revised and updated, Robert Bishop’s seminal work is still the most exhaustive, state-of-the-art treatment of the field available.




Biomedical Engineering Handbook


Book Description

Category Biomedical Engineering Subcategory Contact Editor: Stern




Biologically Inspired Robotics


Book Description

Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers in the fields of control engineering, robotics, and biomedical engineering, this text helps readers understand the technology and principles in this emerging field.