Handbook of Carbon-Based Nanomaterials


Book Description

Handbook of Carbon-Based Nanomaterials provides a comprehensive overview of carbon-based nanomaterials and recent advances in these specialized materials. This book opens with a brief introduction to carbon, including the different forms of carbon and their range of uses. Each chapter systematically covers a different type of carbon-based nanomaterial, including its individual characteristics, synthesis techniques and applications in industry, biomedicine and research. This book offers a broad handbook on carbon-based nanomaterials, detailing the materials aspects, applications and recent advances of this expansive topic. With its global team of contributing authors, Handbook of Carbon-Based Nanomaterials collates specific technical expertise from around the world, for each type of carbon-based nanomaterial. Due to the broad nature of the coverage, this book will be useful to an interdisciplinary readership, including researchers in academia and industry in the fields of materials science, engineering, chemistry, energy and biomedical engineering. Covers a range of carbon-based nanomaterials, including graphene, fullerenes and much more Describes key properties, synthesis techniques and characterization of each carbon-based nanomaterial Discusses a range of applications of carbon-based nanomaterials, from biomedicine to energy applications




Handbook Of Carbon Nanomaterials (Volumes 9-10)


Book Description

This volume is a tribute to the career of Prof. Mildred Dresselhaus. It focuses on the optical properties and spectroscopy of single-wall carbon nanotubes. It contains chapters on diverse experimental and theoretical aspects of the field, written by internationally recognized experts. The volume serves as an important resource for researchers and students interested in carbon nanotubes.




Handbook of Carbon Nanotubes


Book Description

This Handbook covers the fundamentals of carbon nanotubes (CNT), their composites with different polymeric materials (both natural and synthetic) and their potential advanced applications. Three different parts dedicated to each of these aspects are provided, with chapters written by worldwide experts in the field. It provides in-depth information about this material serving as a reference book for a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering. Part 1 comprises 22 chapters covering early stages of the development of CNT, synthesis techniques, growth mechanism, the physics and chemistry of CNT, various innovative characterization techniques, the need of functionalization and different types of functionalization methods as well as the different properties of CNT. A full chapter is devoted to theory and simulation aspects. Moreover, it pursues a significant amount of work on life cycle analysis of CNT and toxicity aspects. Part 2 covers CNT-based polymer nanocomposites in approximately 23 chapters. It starts with a short introduction about polymer nanocomposites with special emphasis on CNT-based polymer nanocomposites, different manufacturing techniques as well as critical issues concerning CNT-based polymer nanocomposites. The text deeply reviews various classes of polymers like thermoset, elastomer, latex, amorphous thermoplastic, crystalline thermoplastic and polymer fibers used to prepare CNT based polymer composites. It provides detailed awareness about the characterization of polymer composites. The morphological, rheological, mechanical, viscoelastic, thermal, electrical, electromagnetic shielding properties are discussed in detail. A chapter dedicated to the simulation and multiscale modelling of polymer nanocomposites is an additional attraction of this part of the Handbook. Part 3 covers various potential applications of CNT in approximately 27 chapters. It focuses on individual applications of CNT including mechanical applications, energy conversion and storage applications, fuel cells and water splitting, solar cells and photovoltaics, sensing applications, nanofluidics, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, non-linear optical applications, piezo electric applications, agriculture applications, biomedical applications, thermal materials, environmental remediation applications, anti-microbial and antibacterial properties and other miscellaneous applications and multi-functional applications of CNT based polymer nanocomposites. One chapter is fully focussed on carbon nanotube research developments: published papers and patents. Risks associated with carbon nanotubes and competitive analysis of carbon nanotubes with other carbon allotropes are also addressed in this Handbook.




Nanomaterials Handbook


Book Description

This title features 11 new chapters unique to this edition, including chapters on grain boundaries in graphene, 2D metal carbides and carbonitrides, mechanics of carbon nanotubes and nanomaterials, biomedical applications, oxidation and purification of carbon nanostructures, sintering of nanoceramics, hydrothermal processing, nanofibers, and nanomaterials safety. It offers a comprehensive approach with a focus on inorganic and carbon-based nanomaterials, including fundamentals, applications, synthesis, and characterization. This book also provides a unique angle from the nanomaterial point of view on application, synthesis, and characterization not found in any other nanomaterials book on the market.




Carbon-Based Nanomaterials in Analytical Chemistry


Book Description

Serving as a reference manual to guide readers through the possibilities for employing carbon-based nanostructured materials, this book fills a gap in the literature for graduate students and professional researchers discussing the advantages and limitations across analytical chemistry in industry and academia.




Carbon Based Nanomaterials


Book Description

Volume is indexed by Thomson Reuters BCI (WoS). Carbon is an essential constituent element of all living organisms. A unique feature of carbon is the variety of forms that it can assume when two or more atoms bond. Carbon has thus attracted, and continues to attract, considerable R&D interest from researchers all over the world. The use of carbon in nanotechnology is a very promising area of research, and considerable government funding is being invested in carbon nanotechnology research.




Carbon Nanomaterials: Modeling, Design, and Applications


Book Description

Carbon Nanomaterials: Modeling, Design, and Applications provides an in-depth review and analysis of the most popular carbon nanomaterials, including fullerenes, carbon nanotubes, graphene and novel carbon nanomaterial-based membranes and thin films, with emphasis on their modeling, design and applications. This book provides basic knowledge of the structures, properties and applications of carbon-based nanomaterials. It illustrates the fundamental structure-property relationships of the materials in both experimental and modeling aspects, offers technical guidance in computational simulation of nanomaterials, and delivers an extensive view on current achievements in research and practice, while presenting new possibilities in the design and usage of carbon nanomaterials. This book is aimed at both undergraduate and graduate students, researchers, designers, professors, and professionals within the fields of materials science and engineering, mechanical engineering, applied physics, and chemical engineering.




Handbook of Carbon Nano Materials


Book Description

"The seventh and eighth volumes of Handbook of Carbon Nano Materials focus on novel properties and applications of nanocarbons, viz., graphene, nanotube and fullerene. The books provide a comprehensive overview of the author's work, and significant discoveries and pioneering contributions from other groups. Specific applications cover latest developments in graphene synthesis, CVD of carbon nanomaterials, multifunctional carbon nanostructures, chemical manipulation, energy conversion and storage, nanotube micellar surface chemistry, and biosensor development. This is a highly useful book for graduate students, as well as beginning and senior researchers."--




Handbook of Smart Materials in Analytical Chemistry


Book Description

A comprehensive guide to smart materials and how they are used in sample preparation, analytical processes, and applications This comprehensive, two-volume handbook provides detailed information on the present state of new materials tailored for selective sample preparation and the legal frame and environmental side effects of the use of smart materials for sample preparation in analytical chemistry, as well as their use in the analytical processes and applications. It covers both methodological and applied analytical aspects, relating to the development and application of new materials for solid-phase extraction (SPE) and solid-phase microextraction (SPME), their use in the different steps and techniques of the analytical process, and their application in specific fields such as water, food, air, pharmaceuticals, clinical sciences and forensics. Every chapter in Handbook of Smart Materials in Analytical Chemistry is written by experts in the field to provide a comprehensive picture of the present state of this key area of analytical sciences and to summarize current applications and research literature in a critical way. Volume 1 covers New Materials for Sample Preparation and Analysis. Volume 2 handles Analytical Processes and Applications. Focuses on the development and applications of smart materials in analytical chemistry Covers both, methodological and applied analytical aspects, for the development of new materials and their use in the different steps and techniques of the analytical process and their application in specific fields Features applications in key areas including water, air, environment, pharma, food, forensic, and clinical Presents the available tools for the use of new materials suitable to aid recognition process to the sample preparation and analysis A key resource for analytical chemists, applied laboratories, and instrument companies Handbook of Smart Materials in Analytical Chemistry, 2V Set is an excellent reference book for specialists and advanced students in the areas of analytical chemistry, including both research and application environments.




Springer Handbook of Nanomaterials


Book Description

The Springer Handbook of Nanomaterials covers the description of materials which have dimension on the "nanoscale". The description of the nanomaterials in this Handbook follows the thorough but concise explanation of the synergy of structure, properties, processing and applications of the given material. The Handbook mainly describes materials in their solid phase; exceptions might be e.g. small sized liquid aerosols or gas bubbles in liquids. The materials are organized by their dimensionality. Zero dimensional structures collect clusters, nanoparticles and quantum dots, one dimensional are nanowires and nanotubes, while two dimensional are represented by thin films and surfaces. The chapters in these larger topics are written on a specific materials and dimensionality combination, e.g. ceramic nanowires. Chapters are authored by well-established and well-known scientists of the particular field. They have measurable part of publications and an important role in establishing new knowledge of the particular field.