Handbook of Coastal Engineering


Book Description

Aims to equip you with the tools to apply the various research, regulations, and design methods to almost all coastal engineering challenges. This book provides information on how to: apply wave equations; control sediment transport and protect beaches; design wave-resistant coastal structures; design and maintain navigation channels; and more.




Springer Handbook of Ocean Engineering


Book Description

This handbook is the definitive reference for the interdisciplinary field that is ocean engineering. It integrates the coverage of fundamental and applied material and encompasses a diverse spectrum of systems, concepts and operations in the maritime environment, as well as providing a comprehensive update on contemporary, leading-edge ocean technologies. Coverage includes an overview on the fundamentals of ocean science, ocean signals and instrumentation, coastal structures, developments in ocean energy technologies and ocean vehicles and automation. It aims at practitioners in a range of offshore industries and naval establishments as well as academic researchers and graduate students in ocean, coastal, offshore and marine engineering and naval architecture. The Springer Handbook of Ocean Engineering is organized in five parts: Part A: Fundamentals, Part B: Autonomous Ocean Vehicles, Subsystems and Control, Part C: Coastal Design, Part D: Offshore Technologies, Part E: Energy Conversion




Handbook Of Coastal And Ocean Engineering (Expanded Edition) (In 2 Volumes)


Book Description

The handbook contains a comprehensive compilation of topics that are at the forefront of many of the technical advances in ocean waves, coastal, and ocean engineering. More than 110 internationally recognized authorities in the field of coastal and ocean engineering have contributed articles in their areas of expertise to this handbook. These international luminaries are from highly respected universities and renowned research and consulting organizations around the world.




Coastal Engineering


Book Description

Effective coastal engineering is expensive, but it is not as costly as neglect or ineffective intervention. Good practice needs to be based on sound principles, but theoretical work and modelling also need to be well grounded in practice, which is continuously evolving. Conceptual and detailed design has been advanced by new industry publications since the publication of the second edition. This third edition provides a number of updates: the sections on wave overtopping have been updated to reflect changes brought in with the recently issued EurOtop II manual; a detailed worked example is given of the calculation of extreme wave conditions for design; additional examples have been included on the reliability of structures and probabilistic design; the method for tidal analysis and calculation of amplitudes and phases of harmonic constituents from water level time series has been introduced in a new appendix together with a worked example of harmonic analysis; and a real-life example is included of a design adapting to climate change. This book is especially useful as an information source for undergraduates and engineering MSc students specializing in coastal engineering and management. Readers require a good grounding in basic fluid mechanics or engineering hydraulics, and some familiarity with elementary statistical concepts.




The Ocean Engineering Handbook


Book Description

Compiled with the help of an internationally acclaimed panel of experts, the Ocean Engineering Handbook is the most complete reference available for professionals. It offers you comprehensive coverage of important areas of the theory and practice of oceanic/coastal engineering and technology. This well organized text includes five major sections: M




Handbook of Coastal Processes and Erosion


Book Description

The objective of this book is to focus on the physical processes that cause coastal erosion.Many scientists and engineers have focused their research on the entire range of physical processes from the waves and the currents in the nearshore to the response of the beach, via sand transport, resulting in a changing coastal morphology. Of these many processes, this book focuses only on those which directly relate the generation of coastal erosion. Some chapters deal exclusively with the physical processes, while others provide examples of erosion problems although most of the chapter topics have clear implications for issues of coastal-zone management, these issues are not belaboured as several other books are already available in this area. The objective is to provide state-of-the-art presentation of the science of coastal erosion processes.




Coastal and Ocean Engineering Practice


Book Description

Successful coastal and ocean engineering projects rely on practical experience with technical tools and knowledge available to the engineer. Often, problems arise from projects that are too complex for theoretical description, which require that engineers exercise sound judgment in addition to reliance on past practical experience. This book focuses on the latest technology applied in design and construction, effective engineering methodology, unique projects and problems, design and construction challenges, and other lessons learned. In addition, unique practices in planning, design, construction, maintenance, and performance of coastal and ocean projects will be explored.




Construction in the Landscape


Book Description

First Published in 2011. Routledge is an imprint of Taylor & Francis, an informa company.




Coastal Engineering Practice 2011


Book Description

Proceedings of the 2011 Conference on Coastal Engineering Practice, held in San Diego, California, August 21-24, 2011. Sponsored by the Coasts, Oceans, Ports, and Rivers Institute of ASCE. This collection contains 90 papers that focus on developing solutions to coastal engineering problems and ensuring sustainable coastal development. Papers reflect an emphasis on practical experience and actual projects rather than specific technical and scientific aspects of coastal engineering. Topics include: case histories of coastal projects; sustainable coastal development; erosion and shoreline protection; coastal environment, water quality, and wetlands restoration; coastal hazards and risk management; coastal sediment processes; ports, harbors, and marine transportation; and local, state, and federal involvement in planning, design, and construction of coastal projects. These papers enhance the exchange of real-world experience and thus will be of interest to practicing coastal engineers.




Physical Models and Laboratory Techniques in Coastal Engineering


Book Description

Laboratory physical models are a valuable tool for coastal engineers. Physical models help us to understand the complex hydrodynamic processes occurring in the nearshore zone and they provide reliable and economic engineering design solutions.This book is about the art and science of physical modeling as applied in coastal engineering. The aim of the book is to consolidate and synthesize into a single text much of the knowledge about physical modeling that has been developed worldwide.This book was written to serve as a graduate-level text for a course in physical modeling or as a reference text for engineers and researchers engaged in physical modeling and laboratory experimentation. The first three chapters serve as an introduction to similitude and physical models, covering topics such as advantages and disadvantages of physical models, systems of units, dimensional analysis, types of similitude and various hydraulic similitude criteria applicable to coastal engineering models.Practical application of similitude principles to coastal engineering studies is covered in Chapter 4 (Hydrodynamic Models), Chapter 5 (Coastal Structure Models) and Chapter 6 (Sediment Transport Models). These chapters develop the appropriate similitude criteria, discuss inherent laboratory and scale effects and overview the technical literature pertaining to these types of models. The final two chapters focus on the related subjects of laboratory wave generation (Chapter 7) and measurement and analysis techniques (Chapter 8).