Handbook of Continuous Crystallization


Book Description

Continuous crystallization is an area of intense research, with particular respect to the pharmaceutical industry and fine chemicals. Improvements in continuous crystallization technologies offer chemical industries significant financial gains, through reduced expenditure and operational costs, and consistent product quality. Written by well-known leaders in the field, The Handbook of Continuous Crystallization presents fundamental and applied knowledge, with attention paid to application and scaling up, and the burgeoning area of process intensification. Beginning with concepts around crystallization techniques and control strategies, the reader will learn about experimental methods and computational tools. Case studies spanning fine and bulk chemicals, the pharmaceutical industry, and employing new mathematical tools, put theory into context.




Handbook of Industrial Crystallization


Book Description

Crystallization is an important separation and purification process used in industries ranging from bulk commodity chemicals to specialty chemicals and pharmaceuticals. In recent years, a number of environmental applications have also come to rely on crystallization in waste treatment and recycling processes.The authors provide an introduction to the field of newcomers and a reference to those involved in the various aspects of industrial crystallization. It is a complete volume covering all aspects of industrial crystallization, including material related to both fundamentals and applications. This new edition presents detailed material on crystallization of biomolecules, precipitation, impurity-crystal interactions, solubility, and design.Provides an ideal introduction for industrial crystallization newcomers Serves as a worthwhile reference to anyone involved in the fieldCovers all aspects of industrial crystallization in a single, complete volume




Crystallization Technology Handbook


Book Description

This handbook seeks to facilitate the selection, design and operation of large-scale industrial crystallizers that process crystals with the proper size distribution, shape and purity sought. This second edition offers results on direct-contact cooling crystallization.




Continuous Pharmaceutical Processing


Book Description

Continuous pharmaceutical manufacturing is currently receiving much interest from industry and regulatory authorities, with the joint aim of allowing rapid access of novel therapeutics and existing medications to the public, without compromising high quality. Research groups from different academic institutions have significantly contributed to this field with an immense amount of published research addressing a variety of topics related to continuous processing. The book is structured to have individual chapters on the different continuous unit operations involved in drug substance and drug product manufacturing. A wide spectrum of topics are covered, including basic principles of continuous manufacturing, applications of continuous flow chemistry in drug synthesis, continuous crystallization, continuous drying, feeders and blenders, roll compaction and continuous wet granulation.The underlying theme for each of these chapters is to present to the reader the recent advances in modeling, experimental investigations and equipment design as they pertain to each individual unit operation. The book also includes chapters on quality by design (QbD) and process analytical technology (PAT) for continuous processing, process control strategies including new concepts of quality-by-control (QbC), real-time process management and plant optimization, business and supply chain considerations related to continuous manufacturing as well as safety guidelines related to continuous chemistry. A separate chapter is dedicated to discussing regulatory aspects of continuous manufacturing, with description of current regulatory environment quality/GMP aspects, as well as regulatory gaps and challenges. Our aim from publishing this book is to make it a valuable reference for readers interested in this topic, with a desire to gain a fundamental understanding of engineering principles and mechanistic studies utilized in understanding and developing continuous processes. In addition, our advanced readers and practitioners in this field will find that the technical content of Continuous Pharmaceutical Processing is at the forefront of recent technological advances, with coverage of future prospects and challenges for this technology.




Industrial Crystallization


Book Description

Bridging the gap between theory and practice, this text provides the reader with a comprehensive overview of industrial crystallization. Newcomers will learn all of the most important topics in industrial crystallization, from key concepts and basic theory to industrial practices. Topics covered include the characterization of a crystalline product and the basic process design for crystallization, as well as batch crystallization, measurement techniques, and details on precipitation, melt crystallization and polymorphism. Each chapter begins with an introduction explaining the importance of the topic, and is supported by homework problems and worked examples. Real world case studies are also provided, as well as new industry-relevant information, making this is an ideal resource for industry practitioners, students, and researchers in the fields of industrial crystallization, separation processes, particle synthesis, and particle technology.




Crystallization


Book Description

Crystallization is a natural occurring process but also a process abundantly used in the industry. Crystallization can occur from a solution, from the melt or via deposition of material from the gas phase (desublimation). Crystals distinguish themself from liquids, gases and amorphous substances by the long-range order of its building blocks that entail the crystals to be formed of well-defined faces, and give rise to a large number of properties of the solid. Crystallization is used at some stage in nearly all process industries as a method of production, purification or recovery of solid materials. Crystallization is practiced on all scales: from the isolation of the first milligrams of a newly synthesized substance in the research laboratory to isolating products on the mulit-million tonne scale in industry. The book describes the breadth of crystallization operations, from isolation from a reaction broth to purification and finally to tailoring product properties. In the first section of the book, the basic mechanisms - nucleation, growth, attrition and agglomeration are introduced. It ensures an understanding of supersaturation, the driving force of crystallization. Furthermore, the solubility of the substance and its dependences on process conditions and the various techniques of crystallization and their possibilities and limitations are discussed. Last but not least, the first part includes an intensive treatment of polymorphism . The second part builds on the basics, exploring how crystallization processes can be developed, either batch-wise or continuous, from solution or from the melt. A discussion of the purification during crystallization serves as a link between the two sections, where practical aspects and an insight using theoretical concepts are combined. Mixing and its influence on the crystallization as well as the mutual interference of down-stream processes with the crystallization are also treated. Finally, techniques to characterize the crop are discussed. The third part of the book is dedicated to accounts of actual developments and of carried-out crystallizations. Typical pitfalls and strategies to avoid these as well as the design of robust processes are presented.




Industrial Crystallization


Book Description

Industrial Crystallization Symposia have been organized by the Crystallization Research Group at the Czechoslovak Research Institute for Inorganic Chemistry, Usti nad Labem, since 1960. Over the years, the increasing popularity of the unit operation of crystallization has been clearly demonstrated by the steady increase in numbers of both the papers presented and the attendances at the meetings. The 6th Symposium (1-3 September 1975) was organized jointly with the European Federation of Chemical Engineering Working Party on Crystallization, and the 44 papers presented were arranged into four sessions - A: Secondary Nucleation, B: Crystal Growth Kinetics, C: Crystal Habit Modification, D: Crystallizer Design, E: Indus trial Crystallizer Operation and Case Studies. The same groupings are preserved in this edited version of the proceedings. This is the first time that the Industrial Crystallization Symposium papers have appeared in one volume. After the 5th (1972) Symposium, authors we.re encouraged to submit their papers to an international journal specializing in crystallization. However, the results were not altogether satisfactory in that less than one third of the papers presented at the meeting were offered for consideration. This time, therefore, the organizing committee decided to attempt to keep the papers together by making arrangements for their pUblication by Plenum Press.




Chemical Engineering in the Pharmaceutical Industry


Book Description

A guide to the important chemical engineering concepts for the development of new drugs, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry offers a guide to the experimental and computational methods related to drug product design and development. The second edition has been greatly expanded and covers a range of topics related to formulation design and process development of drug products. The authors review basic analytics for quantitation of drug product quality attributes, such as potency, purity, content uniformity, and dissolution, that are addressed with consideration of the applied statistics, process analytical technology, and process control. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The contributors explore technology transfer and scale-up of batch processes that are exemplified experimentally and computationally. Written for engineers working in the field, the book examines in-silico process modeling tools that streamline experimental screening approaches. In addition, the authors discuss the emerging field of continuous drug product manufacturing. This revised second edition: Contains 21 new or revised chapters, including chapters on quality by design, computational approaches for drug product modeling, process design with PAT and process control, engineering challenges and solutions Covers chemistry and engineering activities related to dosage form design, and process development, and scale-up Offers analytical methods and applied statistics that highlight drug product quality attributes as design features Presents updated and new example calculations and associated solutions Includes contributions from leading experts in the field Written for pharmaceutical engineers, chemical engineers, undergraduate and graduation students, and professionals in the field of pharmaceutical sciences and manufacturing, Chemical Engineering in the Pharmaceutical Industry, Second Edition contains information designed to be of use from the engineer's perspective and spans information from solid to semi-solid to lyophilized drug products.




PEEK Biomaterials Handbook


Book Description

PEEK biomaterials are currently used in thousands of spinal fusion patients around the world every year. Durability, biocompatibility and excellent resistance to aggressive sterilization procedures make PEEK a polymer of choice, replacing metal in orthopedic implants, from spinal implants and hip replacements to finger joints and dental implants. This Handbook brings together experts in many different facets related to PEEK clinical performance as well as in the areas of materials science, tribology, and biology to provide a complete reference for specialists in the field of plastics, biomaterials, medical device design and surgical applications. Steven Kurtz, author of the well respected UHMWPE Biomaterials Handbook and Director of the Implant Research Center at Drexel University, has developed a one-stop reference covering the processing and blending of PEEK, its properties and biotribology, and the expanding range of medical implants using PEEK: spinal implants, hip and knee replacement, etc. Covering materials science, tribology and applications Provides a complete reference for specialists in the field of plastics, biomaterials, biomedical engineering and medical device design and surgical applications




Pharmaceutical Crystals


Book Description

An important resource that puts the focus on understanding and handling of organic crystals in drug development Since a majority of pharmaceutical solid-state materials are organic crystals, their handling and processing are critical aspects of drug development. Pharmaceutical Crystals: Science and Engineering offers an introduction to and thorough coverage of organic crystals, and explores the essential role they play in drug development and manufacturing. Written contributions from leading researchers and practitioners in the field, this vital resource provides the fundamental knowledge and explains the connection between pharmaceutically relevant properties and the structure of a crystal. Comprehensive in scope, the text covers a range of topics including: crystallization, molecular interactions, polymorphism, analytical methods, processing, and chemical stability. The authors clearly show how to find solutions for pharmaceutical form selection and crystallization processes. Designed to be an accessible guide, this book represents a valuable resource for improving the drug development process of small drug molecules. This important text: Includes the most important aspects of solid-state organic chemistry and its role in drug development Offers solutions for pharmaceutical form selection and crystallization processes Contains a balance between the scientific fundamental and pharmaceutical applications Presents coverage of crystallography, molecular interactions, polymorphism, analytical methods, processing, and chemical stability Written for both practicing pharmaceutical scientists, engineers, and senior undergraduate and graduate students studying pharmaceutical solid-state materials, Pharmaceutical Crystals: Science and Engineering is a reference and textbook for understanding, producing, analyzing, and designing organic crystals which is an imperative skill to master for anyone working in the field.