Handbook Of Character Recognition And Document Image Analysis


Book Description

Optical character recognition and document image analysis have become very important areas with a fast growing number of researchers in the field. This comprehensive handbook with contributions by eminent experts, presents both the theoretical and practical aspects at an introductory level wherever possible.




Handbook of Document Image Processing and Recognition


Book Description

The Handbook of Document Image Processing and Recognition is a comprehensive resource on the latest methods and techniques in document image processing and recognition. Each chapter provides a clear overview of the topic followed by the state of the art of techniques used – including elements of comparison between them – along with supporting references to archival publications, for those interested in delving deeper into topics addressed. Rather than favor a particular approach, the text enables the reader to make an informed decision for their specific problems.




Handbook Of Pattern Recognition And Computer Vision (2nd Edition)


Book Description

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.




Handbook of Document Image Processing and Recognition


Book Description

The Handbook of Document Image Processing and Recognition is a comprehensive resource on the latest methods and techniques in document image processing and recognition. Each chapter provides a clear overview of the topic followed by the state of the art of techniques used – including elements of comparison between them – along with supporting references to archival publications, for those interested in delving deeper into topics addressed. Rather than favor a particular approach, the text enables the reader to make an informed decision for their specific problems.




Handbook of Character Recognition and Document Image Analysis


Book Description

Optical character recognition and document image analysis have become very important areas with a fast growing number of researchers in the field. This comprehensive handbook with contributions by eminent experts, presents both the theoretical and practical aspects at an introductory level wherever possible.




Digital Document Processing


Book Description

This book brings all the major and frontier topics in the field of document analysis together into a single volume, creating a unique reference source that will be invaluable to a large audience of researchers, lecturers and students working in this field. With chapters written by some of the most distinguished researchers active in this field, this book addresses recent advances in digital document processing research and development.




Document Image Analysis


Book Description




Handbook of Texture Analysis


Book Description

Texture analysis is one of the fundamental aspects of human vision by which we discriminate between surfaces and objects. In a similar manner, computer vision can take advantage of the cues provided by surface texture to distinguish and recognize objects. In computer vision, texture analysis may be used alone or in combination with other sensed features (e.g. color, shape, or motion) to perform the task of recognition. Either way, it is a feature of paramount importance and boasts a tremendous body of work in terms of both research and applications.Currently, the main approaches to texture analysis must be sought out through a variety of research papers. This collection of chapters brings together in one handy volume the major topics of importance, and categorizes the various techniques into comprehensible concepts. The methods covered will not only be relevant to those working in computer vision, but will also be of benefit to the computer graphics, psychophysics, and pattern recognition communities, academic or industrial.




Document Processing Using Machine Learning


Book Description

Document Processing Using Machine Learning aims at presenting a handful of resources for students and researchers working in the document image analysis (DIA) domain using machine learning since it covers multiple document processing problems. Starting with an explanation of how Artificial Intelligence (AI) plays an important role in this domain, the book further discusses how different machine learning algorithms can be applied for classification/recognition and clustering problems regardless the type of input data: images or text. In brief, the book offers comprehensive coverage of the most essential topics, including: · The role of AI for document image analysis · Optical character recognition · Machine learning algorithms for document analysis · Extreme learning machines and their applications · Mathematical foundation for Web text document analysis · Social media data analysis · Modalities for document dataset generation This book serves both undergraduate and graduate scholars in Computer Science/Information Technology/Electrical and Computer Engineering. Further, it is a great fit for early career research scientists and industrialists in the domain.




Machine Learning in Document Analysis and Recognition


Book Description

The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.